Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New project to help improve the diet of the world’s poor

20.07.2005


Cassava


Scientists at the University of Bath will be taking part in an international £4.2 million ($7.5 million) research project that could help millions of people avoid starvation.

The BioCassava Plus project will improve the nutritional and storage properties of cassava (Manihot esculenta), the primary food source for more than 250 million Africans and a substantial portion of the diet of nearly 600 million people worldwide.

The research is funded by the Bill and Melinda Gates Foundation through a partnership based at Ohio State University. Scientists from the University of Bath will receive over £300,000 to support their part in the project.



Although cassava is relatively easy to grow even in poor soils and drought conditions, its roots are low in protein and also deficient in several micronutrients, such as iron, zinc and vitamin A.

Once harvested the roots of some varieties of cassava can produce potentially toxic levels of cyanogens – substances that induce poisonous cyanide production.

In addition, harvested roots have a very short shelf-life of only one to three days, which can cause significant wastage and economic losses. Also, like most crops, cassava is susceptible to a variety of diseases and pests; in Africa, cassava mosaic virus is a serious problem.

The new research project, funded by the Bill and Melinda Gates Foundation through its “Grand Challenges in Global Health” programme, will try to overcome these problems before running field trials in Africa and eventually handing over the improved crop to subsistence farmers in the developing world, free of charge.

As well as increasing the amount of protein in the diet of the millions of people who rely on cassava as their primary food source, the improved cassava crop will be easier to store and transport. This means that more locally-grown food will be available in areas where people are most at risk of starvation.

Dr John Beeching from the Department of Biology and Biochemistry at the University of Bath will receive over £313,000 ($560,000) to focus on understanding and controlling the problem of the short shelf-life (post-harvest physiological deterioration) of the cassava root.

Other laboratories in the collaborative project will work on developing new types of cassava plants that have increased levels of zinc, iron, protein and vitamins A and E, have reduced cyanogens levels and are resistant to the viral disease.

“This is a very exciting project to be involved in and I am delighted that we will have the opportunity to work alongside other leading scientists in this area to help solve a pressing problem,” said Dr Beeching.

“Whilst cassava forms a very important part of the diet of more than 600 million people, it is nutritionally lacking and the problems of storage mean it cannot reach the people who need it most.

“Thanks to the Bill and Melinda Gates Foundation we have the opportunity to apply science in a way that can benefit some of the world’s poorest people.”

The research will use transgenic technologies that genetically modify the crop so that it incorporates these new beneficial traits.

“Cassava crop breeders tell us that these problems simply cannot be overcome using traditional plant breeding methods,” said Dr Beeching.

“We have the technological ability to do this safely and in a way that maximizes the benefit of the new crop to the people who need it most.

“What’s more, once we have tested the crop in Africa we will give the crop to subsistence farmers free of charge with absolutely no strings attached so that they can grow and harvest the crop as they need.

“As new cassava plants are grown from cuttings, there will be no need for farmers to come back to us for more seed or supplies - they can simply increase the amount of cassava they grow year-on-year as needs dictate.

“A key challenge for us in the short term is freeing up the intellectual property rights held by research groups and businesses around the world so that we can make the new cassava crop freely available to all those who need it most.

“GM has undoubtedly been a controversial technology in the UK and Europe if not elsewhere, not least because of the major role played by large multinational corporations. But now we have an excellent opportunity to make transgenic technologies work for the benefit of the world’s poor.

“It has taken private funding to do this, and we are delighted that the Bill and Melinda Gates Foundation has recognised the importance of this project in overcoming one of the major challenges to global health.”

Cassava is the fourth-most important crop in Africa. A fully-grown cassava plant can stay in the ground for up to two years and needs relatively little water to survive. The starchy roots are a key source of carbohydrates for subsistence farmers in Africa.

Dr Beeching’s laboratory will focus on the molecular basis and control of accelerated post-harvest deterioration in cassava roots. Earlier work by Dr Beeching has shown that oxidative stress in cassava roots within three hours of harvesting triggers a rapid deterioration in the quality of the vegetable and that antioxidant enzymes and molecules play a major role in controlling this stress response.

They hope that by targeting some of the enzymes involved in this process they can increase the shelf life of the cassava once it has been harvested.

“Cassava that is available in this country has been dipped in wax to prevent deterioration of the vegetable, but clearly this is not a feasible option for people who are struggling to survive” said Dr Beeching.

“Cassava is an excellent crop, but it has problems cannot be simply overcome. It has to be prepared and cooked in order to stop it producing cyanide, it will deteriorate in 72 hours in storage and it is of low nutritional value to the people who eat it to survive.

“We have the world’s top people working on these problems and we hope that within the next ten years we will be ready to hand over our first improved cassava crop to subsistence farmers and make a real difference to the lives of millions of the world’s poorest people.”

Andrew McLaughlin | alfa
Further information:
http://www.bath.ac.uk/news/articles/releases/cassava190705.html

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>