Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Poplar DNA code cracked - a step in combating global warming?

22.09.2004


Forests cover 30% of the world’s land area, house two thirds of life on earth, and are responsible for 90% of the biomass on dry land. So, the impact of trees on our daily life is enormous. Now, an international consortium − which includes researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University − has succeeded in deciphering the first tree genome, that of the poplar. Gaining knowledge of the poplar DNA is an important step in the research into ‘tree-specific genes’, which can be used to make trees even better air purifiers, to have them grow more quickly, or to make them easier to process into paper.



The poplar as model organism

One can hardly overstate the importance of trees as providers of clean air and energy, or as raw material for furniture, building materials, and other implements. A great many properties found in trees are not found in other plants − like their abilities to provide large quantities of wood, to synchronize their growth with the seasons, and to adapt themselves to changing environmental conditions. They have these vital properties, because they must be able to survive for many years in the same location.


Knowledge of the genome of the poplar (Populus trichocarpa) allows researchers to look for the genes − DNA codes for properties − that are specific to trees. Thus, the poplar − with the relatively limited size of its genome − serves as a model organism for trees. Populus trichocarpa has in fact ‘only’ 520 million base pairs (the DNA building blocks), which is about 50 times fewer than a pine tree. Then again, the poplar has four times as many DNA as Arabidopsis, a model plant whose genome was deciphered four years ago.

In May 2002, the international consortium set to work to determine the poplar’s genome. To do this, they used a female poplar from the banks of the Nisqually River in Washington state (USA). The researchers needed just over two years to determine the 520 million base pairs, distributed among 19 chromosomes.

By comparing the genomes of these two model organisms − Populus and Arabidopsis − scientists such as Yves Van de Peer and Pierre Rouzé hope to identify the genes specific to trees. With the aid of sophisticated computer programs, these VIB bio-informatics researchers will identify the genes in the poplar DNA. On the basis of mathematical algorithms, the researchers predict that the poplar has around 50,000 genes, and they anticipate that about 10,000 of them are not found in Arabidopsis and are therefore possibly ‘tree-specific’.

A variety of applications

With the new data, molecular biologists like Wout Boerjan and his research team can get down to work to discover the functions of the genes. This basic research can provide a wealth of information about how trees work, and it can also provide answers to universal biological questions. Indeed, many of the responses and functions found in plants, and thus trees as well, are also found in human and animal life.

But this research can also lead to particular applications in fields such as ecology. A thorough genetic knowledge enables researchers to modify trees genetically for the benefit of humankind and the environment. The genome sequence can contribute to strategies for improving trees more rapidly or for modifying them genetically. Today, trees are the earth’s lungs − and, for example, they can be modified so that they work more effectively in trapping CO2, the primary greenhouse gas. In addition, new tree varieties can be produced that have a finer timber quality. Wood is also the principal material for paper production, and Wout Boerjan and his team are investigating which genes are crucial to the formation of wood and how they might optimize the structure and composition of wood to improve the production of paper.

Sooike Stoops | alfa
Further information:
http://www.vib.be

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>