Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Poplar DNA code cracked - a step in combating global warming?


Forests cover 30% of the world’s land area, house two thirds of life on earth, and are responsible for 90% of the biomass on dry land. So, the impact of trees on our daily life is enormous. Now, an international consortium − which includes researchers from the Flanders Interuniversity Institute for Biotechnology (VIB) at Ghent University − has succeeded in deciphering the first tree genome, that of the poplar. Gaining knowledge of the poplar DNA is an important step in the research into ‘tree-specific genes’, which can be used to make trees even better air purifiers, to have them grow more quickly, or to make them easier to process into paper.

The poplar as model organism

One can hardly overstate the importance of trees as providers of clean air and energy, or as raw material for furniture, building materials, and other implements. A great many properties found in trees are not found in other plants − like their abilities to provide large quantities of wood, to synchronize their growth with the seasons, and to adapt themselves to changing environmental conditions. They have these vital properties, because they must be able to survive for many years in the same location.

Knowledge of the genome of the poplar (Populus trichocarpa) allows researchers to look for the genes − DNA codes for properties − that are specific to trees. Thus, the poplar − with the relatively limited size of its genome − serves as a model organism for trees. Populus trichocarpa has in fact ‘only’ 520 million base pairs (the DNA building blocks), which is about 50 times fewer than a pine tree. Then again, the poplar has four times as many DNA as Arabidopsis, a model plant whose genome was deciphered four years ago.

In May 2002, the international consortium set to work to determine the poplar’s genome. To do this, they used a female poplar from the banks of the Nisqually River in Washington state (USA). The researchers needed just over two years to determine the 520 million base pairs, distributed among 19 chromosomes.

By comparing the genomes of these two model organisms − Populus and Arabidopsis − scientists such as Yves Van de Peer and Pierre Rouzé hope to identify the genes specific to trees. With the aid of sophisticated computer programs, these VIB bio-informatics researchers will identify the genes in the poplar DNA. On the basis of mathematical algorithms, the researchers predict that the poplar has around 50,000 genes, and they anticipate that about 10,000 of them are not found in Arabidopsis and are therefore possibly ‘tree-specific’.

A variety of applications

With the new data, molecular biologists like Wout Boerjan and his research team can get down to work to discover the functions of the genes. This basic research can provide a wealth of information about how trees work, and it can also provide answers to universal biological questions. Indeed, many of the responses and functions found in plants, and thus trees as well, are also found in human and animal life.

But this research can also lead to particular applications in fields such as ecology. A thorough genetic knowledge enables researchers to modify trees genetically for the benefit of humankind and the environment. The genome sequence can contribute to strategies for improving trees more rapidly or for modifying them genetically. Today, trees are the earth’s lungs − and, for example, they can be modified so that they work more effectively in trapping CO2, the primary greenhouse gas. In addition, new tree varieties can be produced that have a finer timber quality. Wood is also the principal material for paper production, and Wout Boerjan and his team are investigating which genes are crucial to the formation of wood and how they might optimize the structure and composition of wood to improve the production of paper.

Sooike Stoops | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>