Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of chocolate unravelled by synchrotron radiation

17.09.2004


The white-grayish film is a sign of fat bloom in chocolate bars.


Think about a piece of chocolate. Imagine it melting in your mouth. The sensation is delicious. Now think of the same image, but this time the chocolate is covered by a white film on its surface. This white film is produced when chocolate is poorly crystallised or when it is stored under the wrong conditions. We ’eat’ also with our eyes, so such bad-looking chocolate seems less nice to the palate. Here is where scientists come into the picture. Researchers from The Netherlands working at the ESRF try to avoid this white layer, called fat bloom, by studying the structure of chocolate. Their aim is to optimise the pleasure of eating it. They publish this week in the Journal of Physical Chemistry B the structure of a component of cocoa butter and also the crystal structure of the most common form of cocoa butter in chocolate, a result that is of great importance for chocolate production. The ESRF synchrotron light was essential for this research.

There is a lot of science in the process of making chocolate. Dark and bitter sweet chocolate contain from 31 to 38% of cocoa-butter, 16 to 32% of cocoa powder and 30 to 50% of sugar. Cocoa butter determines the physical properties of the chocolate. It has a high degree of crystallinity and may crystallise in six different crystalline forms in the course of the production process. This process includes tempering, which consists of repeatedly heating the chocolate to a specific temperature and then cooling it down. It aims to bring the cocoa butter in one of the most stable crystal forms. The different crystalline phases are numbered from phase I to the most stable phase VI. The lower-numbered phases are unstable and do not give a good product, but manufacturers nowadays manage to set the chocolate in phase V. Nevertheless, even this chocolate phase can suffer from phase transition during storage, resulting in fat bloom. This explains the importance of crystallising the chocolate properly.

A team of scientists from the University of Amsterdam, with help of the ESRF, has made a major step forward by identifying for the first time the crystal structure of one of the three main triglycerides that make up chocolate butter. The triglyceride, called SOS, is a cis-mono-unsaturated type and represents one quarter of the chocolate butter. This breakthrough helps in better understanding the melting behaviour of cocoa butter and better controlling the production process. According to Dr. René Peschar, first author of the paper, “This work is expected to be highly relevant to confectionery research and industry and the first step to a better understanding of the mechanism of the fat bloom phenomenon at the molecular level.”



The researchers used the synchrotron light to collect data from which they determined this structure using the X-ray powder diffraction technique. They also stored completely molten cocoa butter at room temperature (around 22°C) for several weeks to get the phase V. Then they studied it at the ESRF with the same technique and managed to construct a crystal structure model of this cocoa butter phase V. “It is impossible to get these results with laboratory data; you really need a synchrotron facility because of its superior data quality”, explains Dr. Peschar, from the University of Amsterdam.

The chocolate research based on data measured at the ESRF has also had impact on industry. The Dutch machine manufacturing company ’Machinefabriek P.M. Duyvis’ acquired a patent concerning an improved method of making chocolate that is based on the results of experiments carried out by the Dutch researchers at the ESRF over the last few years. The company built a prototype, tested and fine-tuned it together with the University of Amsterdam and a major European chocolate producer. The company is situated in the middle of the "Zaanstreek", a region hallmarked by a huge diversity of foodstuff manufacturers and processing more than 20% of the world’s cocoa bean crop.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>