Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of chocolate unravelled by synchrotron radiation

17.09.2004


The white-grayish film is a sign of fat bloom in chocolate bars.


Think about a piece of chocolate. Imagine it melting in your mouth. The sensation is delicious. Now think of the same image, but this time the chocolate is covered by a white film on its surface. This white film is produced when chocolate is poorly crystallised or when it is stored under the wrong conditions. We ’eat’ also with our eyes, so such bad-looking chocolate seems less nice to the palate. Here is where scientists come into the picture. Researchers from The Netherlands working at the ESRF try to avoid this white layer, called fat bloom, by studying the structure of chocolate. Their aim is to optimise the pleasure of eating it. They publish this week in the Journal of Physical Chemistry B the structure of a component of cocoa butter and also the crystal structure of the most common form of cocoa butter in chocolate, a result that is of great importance for chocolate production. The ESRF synchrotron light was essential for this research.

There is a lot of science in the process of making chocolate. Dark and bitter sweet chocolate contain from 31 to 38% of cocoa-butter, 16 to 32% of cocoa powder and 30 to 50% of sugar. Cocoa butter determines the physical properties of the chocolate. It has a high degree of crystallinity and may crystallise in six different crystalline forms in the course of the production process. This process includes tempering, which consists of repeatedly heating the chocolate to a specific temperature and then cooling it down. It aims to bring the cocoa butter in one of the most stable crystal forms. The different crystalline phases are numbered from phase I to the most stable phase VI. The lower-numbered phases are unstable and do not give a good product, but manufacturers nowadays manage to set the chocolate in phase V. Nevertheless, even this chocolate phase can suffer from phase transition during storage, resulting in fat bloom. This explains the importance of crystallising the chocolate properly.

A team of scientists from the University of Amsterdam, with help of the ESRF, has made a major step forward by identifying for the first time the crystal structure of one of the three main triglycerides that make up chocolate butter. The triglyceride, called SOS, is a cis-mono-unsaturated type and represents one quarter of the chocolate butter. This breakthrough helps in better understanding the melting behaviour of cocoa butter and better controlling the production process. According to Dr. René Peschar, first author of the paper, “This work is expected to be highly relevant to confectionery research and industry and the first step to a better understanding of the mechanism of the fat bloom phenomenon at the molecular level.”



The researchers used the synchrotron light to collect data from which they determined this structure using the X-ray powder diffraction technique. They also stored completely molten cocoa butter at room temperature (around 22°C) for several weeks to get the phase V. Then they studied it at the ESRF with the same technique and managed to construct a crystal structure model of this cocoa butter phase V. “It is impossible to get these results with laboratory data; you really need a synchrotron facility because of its superior data quality”, explains Dr. Peschar, from the University of Amsterdam.

The chocolate research based on data measured at the ESRF has also had impact on industry. The Dutch machine manufacturing company ’Machinefabriek P.M. Duyvis’ acquired a patent concerning an improved method of making chocolate that is based on the results of experiments carried out by the Dutch researchers at the ESRF over the last few years. The company built a prototype, tested and fine-tuned it together with the University of Amsterdam and a major European chocolate producer. The company is situated in the middle of the "Zaanstreek", a region hallmarked by a huge diversity of foodstuff manufacturers and processing more than 20% of the world’s cocoa bean crop.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>