Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of chocolate unravelled by synchrotron radiation

17.09.2004


The white-grayish film is a sign of fat bloom in chocolate bars.


Think about a piece of chocolate. Imagine it melting in your mouth. The sensation is delicious. Now think of the same image, but this time the chocolate is covered by a white film on its surface. This white film is produced when chocolate is poorly crystallised or when it is stored under the wrong conditions. We ’eat’ also with our eyes, so such bad-looking chocolate seems less nice to the palate. Here is where scientists come into the picture. Researchers from The Netherlands working at the ESRF try to avoid this white layer, called fat bloom, by studying the structure of chocolate. Their aim is to optimise the pleasure of eating it. They publish this week in the Journal of Physical Chemistry B the structure of a component of cocoa butter and also the crystal structure of the most common form of cocoa butter in chocolate, a result that is of great importance for chocolate production. The ESRF synchrotron light was essential for this research.

There is a lot of science in the process of making chocolate. Dark and bitter sweet chocolate contain from 31 to 38% of cocoa-butter, 16 to 32% of cocoa powder and 30 to 50% of sugar. Cocoa butter determines the physical properties of the chocolate. It has a high degree of crystallinity and may crystallise in six different crystalline forms in the course of the production process. This process includes tempering, which consists of repeatedly heating the chocolate to a specific temperature and then cooling it down. It aims to bring the cocoa butter in one of the most stable crystal forms. The different crystalline phases are numbered from phase I to the most stable phase VI. The lower-numbered phases are unstable and do not give a good product, but manufacturers nowadays manage to set the chocolate in phase V. Nevertheless, even this chocolate phase can suffer from phase transition during storage, resulting in fat bloom. This explains the importance of crystallising the chocolate properly.

A team of scientists from the University of Amsterdam, with help of the ESRF, has made a major step forward by identifying for the first time the crystal structure of one of the three main triglycerides that make up chocolate butter. The triglyceride, called SOS, is a cis-mono-unsaturated type and represents one quarter of the chocolate butter. This breakthrough helps in better understanding the melting behaviour of cocoa butter and better controlling the production process. According to Dr. René Peschar, first author of the paper, “This work is expected to be highly relevant to confectionery research and industry and the first step to a better understanding of the mechanism of the fat bloom phenomenon at the molecular level.”



The researchers used the synchrotron light to collect data from which they determined this structure using the X-ray powder diffraction technique. They also stored completely molten cocoa butter at room temperature (around 22°C) for several weeks to get the phase V. Then they studied it at the ESRF with the same technique and managed to construct a crystal structure model of this cocoa butter phase V. “It is impossible to get these results with laboratory data; you really need a synchrotron facility because of its superior data quality”, explains Dr. Peschar, from the University of Amsterdam.

The chocolate research based on data measured at the ESRF has also had impact on industry. The Dutch machine manufacturing company ’Machinefabriek P.M. Duyvis’ acquired a patent concerning an improved method of making chocolate that is based on the results of experiments carried out by the Dutch researchers at the ESRF over the last few years. The company built a prototype, tested and fine-tuned it together with the University of Amsterdam and a major European chocolate producer. The company is situated in the middle of the "Zaanstreek", a region hallmarked by a huge diversity of foodstuff manufacturers and processing more than 20% of the world’s cocoa bean crop.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>