Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neurosurgeons at Rush Explore "Smart" Drug to Treat Brain Cancer

04.08.2004


The use of a "smart" drug that targets cancer cells in the brain following removal of a tumor may provide treatment that can extend the survival of people with the most common form of primary malignant brain tumor, glioblastoma multiforme (GBM).



A phase III research study being conducted at Rush University Medical Center by neurosurgeon Dr. Richard Byrne involves the use of convection-enhanced delivery, a novel drug delivery approach, to facilitate infusion of the study drug, IL13-PE38QQR, into the brain. IL13-PE38QQR is designed to attach to specific receptors on tumor cells that are not present on normal brain cells.

The problem with current treatments for brain tumors is that while neurosurgeons can remove as much as 95 percent or more of a tumor, some cancer cells will remain undetectable and scattered throughout the brain tissue adjacent to the tumor site. Current methods to kill the remaining cancer cells with radiation or chemotherapy have resulted in a median survival rate after initial diagnosis of about nine to twelve months, and normal brain cells can be injured in the process.


Patients in the study first will undergo neurosurgery to remove as much of the GBM tumor as possible. Within a week, magnetic resonance imaging (MRI) will be used to scan the brain tissue around the cavity where the tumor has been removed to identify suspicious areas where cancer cells may remain.

With the target areas identified, Byrne and his team will then perform a second surgical procedure using an image guidance technique to pass catheters through the skull into the brain to reach two to four areas of tissue suspected of harboring residual, infiltrating tumor cells. Following catheter placement, the drug is continually infused or delivered through the catheters into the brain. A pump is used to slowly push the drug solution through the catheters. This method of treatment is referred to as convection-enhanced delivery, or CED. The patient is able to walk around during this time.

IL13-PE38QQR is a hybrid protein that contains the cytokine IL13, which allows the drug to specifically attach or bind to tumor cells that have the IL13 receptor. "Like a key to a lock," the cytokine binds to the receptor and allows the study drug to enter and potentially kill the tumor cells. Normal brain cells remain unaffected because they do not appear to have the IL13 receptor and therefore the study drug does not bind to them.

The positive-pressure, convection-enhanced delivery method is used to diffuse the drug throughout the targeted brain tissue. Convection enhanced delivery to brain tissue allows the drug to bypass the blood-brain barrier, which protects the brain by preventing "foreign substances" such as drugs in the blood from reaching brain tissue, which can occur when drugs are administered systemically. "There are countless success stories of treating tumors that work in cell lines that fail when we try them in the brain, in part because of the blood brain barrier," said Byrne, who is a member of the Chicago Institute of Neurosurgery and Neuroresearch medical group (CINN). He is the principal investigator for the study at Rush.

"Previous studies with this drug have shown that it was safe and that there were some very dramatic responses in terms of eliminating residual tumor in the brain and prolonging patient life. We believe this drug can positively improve life span for some GBM brain tumor patients by destroying the cancerous cells we cannot remove through neurosurgery," said Byrne.

One-third of the patients enrolled in the trial will be randomly assigned to receive one treatment currently available. These patients will undergo surgery to remove the tumor and to have FDA approved chemotherapeutic "wafers" placed in the tumor cavity. The wafers slowly dissolve over 2 to 3 weeks, releasing chemotherapeutic drugs to the area. Two-thirds of the study patients will be randomly assigned to receive the IL13-PE38QQR study drug.

GBM is the most common and aggressive form of primary brain tumors, and most cases occur in people between the ages 40 and 60. GBM is a highly malignant tumor and infiltrates the normal brain tissue surrounding the tumor. GBMs may also invade the membranes covering the brain, or spread via the spinal fluid bathing the brain and spinal cord. Most malignant gliomas are known to re-grow in a location close to the resection cavity left by the removal of the tumor.

People with these brain tumors typically suffer from some degree of symptoms that can include headaches, nausea and vomiting, personality changes, seizures, vision loss and slowing of cognitive function.

Individuals interested in participating in this study must have a diagnosis of recurrent glioblastoma multiforme and the tumor must have reoccurred after surgical resection, radiation and chemotherapy were used to treat the initial tumor.

The "PRECISE" (Phase III Randomized Evaluation of Convection IL13) trial is designed to enroll up to 300 patients. A number of the world’s leading brain tumor treatment centers, including Rush University Medical Center, have agreed to participate in the PRECISE trial to further the study of treatments for GBM. NeoPharm, Inc., based in Lake Forest, Ill., funds the study and supplies the IL13-PE338, which was developed in the Laboratory of Molecular Tumor Biology of the U.S. Food and Drug Administration.

John Pontarelli | EurekAlert!
Further information:
http://www.rush.edu

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>