Comparing primate genomes offers insight into human evolution

Some primatologists have argued that to understand human nature we must understand the behavior of apes. In the social interactions and organization of modern primates, the theory goes, we can see the evolutionary roots of our own social relationships. In the genomic era, as scientists become more adept at extracting biological meaning from an ever expanding repository of sequenced genomes, it is likely that our next of kin will again hold promising clues to our own identity.

Comparing primate genomes is an approach that can help scientists understand the genetic basis of the physical and biochemical traits that distinguish primate species. James Sikela and colleagues, for example, collected DNA from humans, chimpanzees, bonobos, gorillas, and orangutans to identify variations in the number of copies of individual genes among the different species. Their work is published in this month’s issue of the open-access journal, PLoS Biology.

Overall, Sikela and colleagues found more than 1,000 genes with changes in copy number in specific primate lineages. All the great ape species showed more increases than decreases in gene copy numbers, but humans showed the highest number of genes with increased copy numbers, at 134, and many of these duplicated human genes are implicated in brain structure and function.

Because some of these gene changes were unique to each of the species examined, they will likely account for some of the physiological and morphological characteristics that are unique to each species. One cluster of genes that amplified only in humans was mapped to a genomic area that appears prone to instability in human, chimp, bonobo, and gorilla. This region has undergone modifications in each of the other descendent primate species, suggesting an evolutionary role. In humans, gene mutations in this region are also associated with the inherited disorder spinal muscular atrophy. This fact, along with the observation that there are human-specific gene duplications in this region, suggests a link between genome instability, disease processes, and evolutionary adaptation.

In their genome-wide hunt for gene duplications and losses in humans and great apes, Sikela and colleagues have highlighted genomic regions likely to have influenced primate, and in particular human, evolution.

Media Contact

James Sikela EurekAlert!

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors