Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bioinsecticide for controlling plagues in greenhouses

17.06.2004


Developing a bioinsecticide that is more effective than pesticides for controlling pests in greenhouses is the aim of the project undertaken by a research team from the Public University of Navarre and commissioned by the Almería Fruit & Vegetable Exporters Association (COEXPHAL).

Biological efficiaciousness

The COEXPHAL Association of the province of Almería manages a surface area of about 18,000 hectares, primarily given over to greenhouse vegetables. Many of these crops (peppers, tomato, watermelon, melon, marrow, cucumber, beans and aubergine) have associated plant health problems that have an important impact on production costs. Some of the more serious problems in this respect originate in the larvae of the Llepidoptera Spodoptera exigua.



However, there is no commercial biological product that is currently effective in the control of this insect. The Public University of Navarre has developed a bioinsecticide for COEXPHAL based on isolated elements of the S. exigua nucleopolyhedrovirus which, after undertaking experimental tests, have proved to be more efficient in controlling pests than chemical pesticides.

It should be pointed out that the control of this insect by means of the application of chemical pesticides in greenhouses of the Association costs more than six million euros annually and does not enable the desired results to be obtained due to the serious problems of resistance to this pest.

Rise in bioinsecticides

The development of bioinsecticides has become more relevant in recent years, given that the interest shown by growers and companies is ever greater - the pests producing negative effects on health and on the quality of the environment.

In concrete, bioinsecticides based on baculovirus, given its characteristics of safety, efficiency and specificity, are ideal biological pest control agents for inclusion in integrated control programmes. Moreover, their insecticide action is especially useful against those plant-devouring species that have developed multiple resistance to chemical pesticides.

In the development of the bioinsecticide object of this project, isolated S. Exigua multiple nucleopolyhedrovirus has been obtained from dead larvae from a number of different habitats - natural epizootic ones.

Iñaki Casado Redin | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=512&hizk=I
http://www.unavarra.es

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>