Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More useful plants may sprout from gene role discovery

20.04.2004


It may be possible to alter plants so they are more nutritious and easier to process without weakening them so much they fall over, according to Purdue University researchers who found a new twist in a plant formation biochemical pathway.


Clint Chapple



Decreasing the amount of two acids in plant cell walls may enhance livestock feed digestibility for better nutrition, while increasing the potential uses of various plants, said Clint Chapple, Purdue biochemistry professor.

The findings, published in a recent issue of The Plant Cell, revise scientific thinking about the role of ferulic and sinapic acids in building plant cell walls. For many years, researchers believed that the two acids contributed to the production of lignin, the principal structural component of plant cell walls.


"It’s the hardening substance that makes the difference between a piece of celery and a piece of wood," Chapple said.

Based on laboratory studies, Chapple and his team found that an enzyme converts two molecules into the acids, which then are incorporated into cell walls. This indicates that sinapic and ferulic acids are end products rather than intermediates, or building blocks, in an essential biochemical pathway for cell wall construction, Chapple said.

"Now that we know the acids are not part of the lignin pathway, it may be possible to change cell walls without harming the plant," he said. "It will be easy to isolate and alter the corresponding gene in other plants, including those used for livestock feed such as corn."

The main focus of the research is to create more useful plants. In normal plants, cross linking of lignin, ferulic acid and other substances forms a strong bond that make cell walls difficult to break down.

But Chapple said he believes that cell walls could be manipulated so that nutrients in livestock feed are more easily absorbed into the digestive tract.

One clue that led Chapple’s team to its finding came when the scientists looked at leaves from normal and mutant Arabidopsis thaliana plants under ultraviolet lights. The normal Arabidopsis leaves appear blue-green under UV light. Mutants, which lack a derivative of sinapic acid, appeared red under the UV light. This enabled the researchers to identify the gene responsible for synthesis of sinapic and ferulic acids, compounds that subsequently are cross-linked into cell walls.

Altering the gene that programs an enzyme involved in creation of ferulic acid and sinapic acid might be a way to change cell wall make up, Chapple said. His team cloned the gene, called REDUCED EPIDERMAL FLUORESCENCE1 (REF1), which encodes an enzyme that is a member of the aldehyde dehydrogenase family. A similar enzyme helps the human body detoxify alcohol.

"People thought that we’d have a hard time manipulating ferulic acid in corn cell walls because that might mess around with lignin production and the plants would fall over," Chapple said about earlier hypotheses on producing more digestible animal feed.

The new findings may solve some agriculture production problems, he said.

"We appear to be reaching the limits of productivity in terms of bushels per acre," Chapple said. "You can only plant things so close together; plants can only grow so big. If a seed company were able to increase yield per acre by 1 percent, that’s a big improvement."

In contrast, if the quality of a crop or its digestibility could be altered, that would be a significant benefit to farmers and their livestock.

"You could feed a cow more, but even that has a limit because it will only eat so much," Chapple said. "Or you could make what the cow eats more energy-rich by improving the digestibility."

The other researchers involved in this study were: Ramesh Nair, now with Pioneer Hi-Bred International; Kristen Bastress, Duke University graduate student; Max Ruegger, now with Dow AgroSciences; and Jeff Denault, Eli Lilly and Co. research scientist. The U.S. Department of Energy’s Division of Energy Biosciences and the Howard Hughes Medical Institute Undergraduate Initiative provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu
Source: Clint Chapple, (765) 494-0494, chapple@purdue.edu
Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040419.Chapple.fluoresc.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/

More articles from Agricultural and Forestry Science:

nachricht Climate change, population growth may lead to open ocean aquaculture
05.10.2017 | Oregon State University

nachricht New machine evaluates soybean at harvest for quality
04.10.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>