Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research adds health benefit to tomatoes

20.02.2004


Researchers at Oregon State University have created purple-fruited tomatoes that include anthocyanins – the same class of health-promoting pigments in red wine that function as antioxidants and are believed to prevent heart disease.


Purple-fruited tomatoes that include anthocyanins, health-promoting pigments that function as antioxidants, created by researchers at Oregon State University.



Their research is featured as the cover story in the latest issue of the Journal of Heredity.

Domestic tomato varieties grown and consumed in the United States do not normally produce fruit containing any anthocyanin, explained Jim Myers, OSU’s Baggett Frazier professor of vegetable breeding. The success in producing anthocyanin-containing tomatoes – through traditional breeding techniques – could help researchers develop even more new varieties of tomatoes with other nutrients, both for home gardeners and for the food industry, he added.


"Tomatoes are second only to the potato in terms of the top vegetable consumed in the world," Myers said. "Per capita use in the U.S. in 2003 was 89 pounds of tomatoes per person. If we could boost the nutritional value of tomatoes, a large part of the population would benefit from that."

The OSU researchers accomplished the feat through the characterization of the inheritance pattern of a little studied gene in tomatoes called "anthocyanin fruit," or Aft. Myers and his OSU graduate students crossed a domestic tomato plant with a genetic stock of tomato that included a gene incorporated from a wild relative with anthocyanin-containing fruit and the Aft gene. The result: a domestic-type tomato fruit containing the purple pigment and the Aft gene, thereby opening the door towards developing anthocyanin-rich tomatoes.

Assisting Myers were graduate students Carl M. Jones, now at the University of California-Davis, and Peter Mes. The OSU researchers grew the seeds of their new cross of anthocyanin tomato fruit in the OSU research greenhouse for two generations, backcrossing them with the original parent types. This work led them to confirm that anthocyanin fruits are transmitted in tomatoes by a single dominant gene, Aft.

"We are learning about how anthocyanin genes are expressed in tomatoes, and how we might cross tomatoes to get more nutritional value," explained Myers.

Comparing chemical analyses of the tomatoes with the Aft gene to those without the gene, the OSU plant breeders determined the pigment composition of anthocyanin fruit gene, explained Myers. They also verified that indeed, having fruits containing anthocyanin could be inherited through a single gene, Aft.

Anthocyanins are the source of the blue, purple and red in berries, grapes and some other fruits and vegetables. These pigments also function as antioxidants, believed to protect the human body from oxidative damage that may lead to heart disease, cancer and aging, explained Mes.

Working with Myers on his doctoral research, Mes is breeding new crosses of tomatoes and analyzing the antioxidant activity of not only anthocyanins in the fruits, but also carotenoids, another class of beneficial phytonutrients. He is also conducting preliminary nutrition studies on humans that have consumed different types of his tomatoes as juice, to see how the various carotenoids are metabolized and which carotenoids prevent oxidation in human plasma.

Industry is interested in their work with higher nutrient tomatoes, say Mes and Myers.

"The medical, the nutritional and the food research industries all are keenly interested in the health benefits of phytochemicals in all sorts of fruits and vegetables," said Myers. "We are happy to find out we can accomplish this in tomatoes using traditional, classical plant breeding techniques."

For more than 40 years, OSU vegetable breeders W.A. Frazier, James Baggett and now Myers, the current OSU Baggett-Frazier Professor of Vegetable Breeding, have developed more than a dozen tomato varieties for commercial and home growers around the world.


###
By Carol Savonen, 541-737-3380
Source: Jim Myers, 541-737-3083

Jim Myers | Oregon State University
Further information:
http://oregonstate.edu/dept/ncs/newsarch/2004/Feb04/tomato.htm

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>