Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research adds health benefit to tomatoes

20.02.2004


Researchers at Oregon State University have created purple-fruited tomatoes that include anthocyanins – the same class of health-promoting pigments in red wine that function as antioxidants and are believed to prevent heart disease.


Purple-fruited tomatoes that include anthocyanins, health-promoting pigments that function as antioxidants, created by researchers at Oregon State University.



Their research is featured as the cover story in the latest issue of the Journal of Heredity.

Domestic tomato varieties grown and consumed in the United States do not normally produce fruit containing any anthocyanin, explained Jim Myers, OSU’s Baggett Frazier professor of vegetable breeding. The success in producing anthocyanin-containing tomatoes – through traditional breeding techniques – could help researchers develop even more new varieties of tomatoes with other nutrients, both for home gardeners and for the food industry, he added.


"Tomatoes are second only to the potato in terms of the top vegetable consumed in the world," Myers said. "Per capita use in the U.S. in 2003 was 89 pounds of tomatoes per person. If we could boost the nutritional value of tomatoes, a large part of the population would benefit from that."

The OSU researchers accomplished the feat through the characterization of the inheritance pattern of a little studied gene in tomatoes called "anthocyanin fruit," or Aft. Myers and his OSU graduate students crossed a domestic tomato plant with a genetic stock of tomato that included a gene incorporated from a wild relative with anthocyanin-containing fruit and the Aft gene. The result: a domestic-type tomato fruit containing the purple pigment and the Aft gene, thereby opening the door towards developing anthocyanin-rich tomatoes.

Assisting Myers were graduate students Carl M. Jones, now at the University of California-Davis, and Peter Mes. The OSU researchers grew the seeds of their new cross of anthocyanin tomato fruit in the OSU research greenhouse for two generations, backcrossing them with the original parent types. This work led them to confirm that anthocyanin fruits are transmitted in tomatoes by a single dominant gene, Aft.

"We are learning about how anthocyanin genes are expressed in tomatoes, and how we might cross tomatoes to get more nutritional value," explained Myers.

Comparing chemical analyses of the tomatoes with the Aft gene to those without the gene, the OSU plant breeders determined the pigment composition of anthocyanin fruit gene, explained Myers. They also verified that indeed, having fruits containing anthocyanin could be inherited through a single gene, Aft.

Anthocyanins are the source of the blue, purple and red in berries, grapes and some other fruits and vegetables. These pigments also function as antioxidants, believed to protect the human body from oxidative damage that may lead to heart disease, cancer and aging, explained Mes.

Working with Myers on his doctoral research, Mes is breeding new crosses of tomatoes and analyzing the antioxidant activity of not only anthocyanins in the fruits, but also carotenoids, another class of beneficial phytonutrients. He is also conducting preliminary nutrition studies on humans that have consumed different types of his tomatoes as juice, to see how the various carotenoids are metabolized and which carotenoids prevent oxidation in human plasma.

Industry is interested in their work with higher nutrient tomatoes, say Mes and Myers.

"The medical, the nutritional and the food research industries all are keenly interested in the health benefits of phytochemicals in all sorts of fruits and vegetables," said Myers. "We are happy to find out we can accomplish this in tomatoes using traditional, classical plant breeding techniques."

For more than 40 years, OSU vegetable breeders W.A. Frazier, James Baggett and now Myers, the current OSU Baggett-Frazier Professor of Vegetable Breeding, have developed more than a dozen tomato varieties for commercial and home growers around the world.


###
By Carol Savonen, 541-737-3380
Source: Jim Myers, 541-737-3083

Jim Myers | Oregon State University
Further information:
http://oregonstate.edu/dept/ncs/newsarch/2004/Feb04/tomato.htm

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>