Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Get To The Root Of Cassava’S Cyanide-Producing Abilities

13.05.2003


Cassava is the third-most important food source in tropical countries, but it has one major problem: The roots and leaves of poorly processed cassava plants contain a substance that, when eaten, can trigger the production of cyanide.


A cassava plant usually reaches 3 to 4 feet in height, though some plants can grow up to 13 feet tall.


Cyanogens in cassava plants convert to cyanide when raw cassava is eaten or processed.



That’s a serious problem for the 500 million people who rely on cassava as their main source of calories, among them subsistence farmers in Sub-Saharan Africa, said Richard Sayre, a professor of plant biology at Ohio State University. He and his colleague Dimuth Siritunga, a postdoctoral researcher in plant biology at the university, have created cyanogen-free cassava plants. A cyanogen is a substance that induces cyanide production.

Their study appeared in a recent issue of the journal Planta.


Cassava is a hardy plant – it can remain in the ground for up to two years and needs relatively little water to survive. It’s the key source of carbohydrates for subsistence farmers in Africa. But an unprocessed cassava plant contains potentially toxic levels of a cyanogen called linamarin.

The proper processing of cassava – drying, soaking in water, rinsing or baking – effectively reduces cassava’s linamarin content. But, said Sayre, shortcut processing techniques, which are frequently used during famines, can yield toxic food products.

“If we could eliminate the cyanogens in cassava, the plant wouldn’t need to be processed before it’s eaten,” he said. “In Africa, improperly processed cassava is a major problem. It’s associated with a number of cyanide-related health disorders, particularly among people who are already malnourished.”

Chronic, low-level cyanide exposure is associated with the development of goiter and with tropical ataxic neuropathy, a nerve-damaging disorder that renders a person unsteady and uncoordinated. Severe cyanide poisoning, particularly during famines, is associated with outbreaks of a debilitating, irreversible paralytic disorder called Konzo and, in some cases, death. The incidence of Konzo and tropical ataxic neuropathy can be as high as 3 percent in some areas.

People who get little or no protein in their diets are particularly susceptible to cyanide poisoning, as they lack the proper amino acids necessary to help detoxify the poison.

Sayre and Siritunga engineered cassava plants in which the expression of the genes responsible for linamarin synthesis was blocked. They then analyzed the linamarin content in these plants’ leaves and roots, finding a significant reduction of the cyanogen in leaves (by 60 to 94 percent) and in roots (by 99 percent) compared to normal cassava plants.

Cassava leaves contain more linamarin than do the plant’s roots, Sayre said. Plant biologists believe that somehow linamarin is transported from the leaves to the roots early in a plant’s life. Turning off the linamarin-inducing genes in cassava leaves might reduce the levels of linamarin in the plant’s roots.

“When leaf linamarin was reduced by 40 percent, the roots contained less than 1 percent of the cyanogen,” Sayre said, adding that it’s critical for the leaves of a growing cassava plant to contain a small amount of linamarin.

“Linamarin protects cassava from being eaten by insects or animals,” he said. “Plants with moderate linamarin levels in their leaves and that contain nearly no linamarin in their roots are both protected from herbivores and contain far less of the cyanogen in their roots.”

Cyanide forms when cassava is processed. But the toxin is volatile and is released into the air, rather than remaining in the food. Correct processing methods ensure that the cyanogen content in cassava plants will be within an acceptable range, Sayre said. (The United Nations’ Food and Agriculture Organization has established maximum recommended cyanide levels for foods.)

“In African countries, it’s mostly women and children who are susceptible to cyanide poisoning,” Sayre said. “Women are usually charged with processing the plant, which leaves them susceptible to inhaling cyanide gas. Cyanide can poison a person by either inhalation or ingestion.”

The shelf life of a cassava root is very short once it’s removed from the stem, so there’s an urgency to get the food to market.

“Roots can turn to mush in less than a week,” Sayre said. “Cassava’s fresh market time is very small, so it has to be processed immediately.”

And that’s where consumers can run into problems -- the rush to get cassava to the market may keep some batches of cassava from being processed properly. Even if the plant is properly processed, exposure to the volatile cyanide can cause health problems in people charged with processing the roots and leaves.

While cassava roots contain less than 10 percent of the linamarin level found in cassava leaves, it’s the long-term exposure to cyanide that presents a threat to humans.

“Linamarin is converted to cyanide when eaten,” Sayre said. “Repeated exposure of low doses of cyanide over time can lead to health problems.

“But these cyanogen-free plants represent a safer and more marketable food product as well as a tool to determine the role of cyanogens in protection against insect pests and crop productivity.”

“However, preliminary studies indicate that linamarin may be important in the transport of nitrogen from cassava leaves to its roots in young plants,” he continued. “Plants producing varying levels of linamarin need to be tested in field trials to determine if the inhibition of linamarin synthesis affects plant yield.”

Grants from the Rockefeller Foundation, the Consortium for Plant Biotechnology Research, the Cassava Biotechnology Network and Ohio State University supported this research.


Contact: Richard Sayre, 614-292 2587; Sayre.2@osu.edu
Written by Holly Wagner, 614-292-8310; Wagner.235@osu.edu

Holly Wagner | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/cassava.htm
http://link.springer-ny.com/link/service/journals/00425/

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>