Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Get To The Root Of Cassava’S Cyanide-Producing Abilities

13.05.2003


Cassava is the third-most important food source in tropical countries, but it has one major problem: The roots and leaves of poorly processed cassava plants contain a substance that, when eaten, can trigger the production of cyanide.


A cassava plant usually reaches 3 to 4 feet in height, though some plants can grow up to 13 feet tall.


Cyanogens in cassava plants convert to cyanide when raw cassava is eaten or processed.



That’s a serious problem for the 500 million people who rely on cassava as their main source of calories, among them subsistence farmers in Sub-Saharan Africa, said Richard Sayre, a professor of plant biology at Ohio State University. He and his colleague Dimuth Siritunga, a postdoctoral researcher in plant biology at the university, have created cyanogen-free cassava plants. A cyanogen is a substance that induces cyanide production.

Their study appeared in a recent issue of the journal Planta.


Cassava is a hardy plant – it can remain in the ground for up to two years and needs relatively little water to survive. It’s the key source of carbohydrates for subsistence farmers in Africa. But an unprocessed cassava plant contains potentially toxic levels of a cyanogen called linamarin.

The proper processing of cassava – drying, soaking in water, rinsing or baking – effectively reduces cassava’s linamarin content. But, said Sayre, shortcut processing techniques, which are frequently used during famines, can yield toxic food products.

“If we could eliminate the cyanogens in cassava, the plant wouldn’t need to be processed before it’s eaten,” he said. “In Africa, improperly processed cassava is a major problem. It’s associated with a number of cyanide-related health disorders, particularly among people who are already malnourished.”

Chronic, low-level cyanide exposure is associated with the development of goiter and with tropical ataxic neuropathy, a nerve-damaging disorder that renders a person unsteady and uncoordinated. Severe cyanide poisoning, particularly during famines, is associated with outbreaks of a debilitating, irreversible paralytic disorder called Konzo and, in some cases, death. The incidence of Konzo and tropical ataxic neuropathy can be as high as 3 percent in some areas.

People who get little or no protein in their diets are particularly susceptible to cyanide poisoning, as they lack the proper amino acids necessary to help detoxify the poison.

Sayre and Siritunga engineered cassava plants in which the expression of the genes responsible for linamarin synthesis was blocked. They then analyzed the linamarin content in these plants’ leaves and roots, finding a significant reduction of the cyanogen in leaves (by 60 to 94 percent) and in roots (by 99 percent) compared to normal cassava plants.

Cassava leaves contain more linamarin than do the plant’s roots, Sayre said. Plant biologists believe that somehow linamarin is transported from the leaves to the roots early in a plant’s life. Turning off the linamarin-inducing genes in cassava leaves might reduce the levels of linamarin in the plant’s roots.

“When leaf linamarin was reduced by 40 percent, the roots contained less than 1 percent of the cyanogen,” Sayre said, adding that it’s critical for the leaves of a growing cassava plant to contain a small amount of linamarin.

“Linamarin protects cassava from being eaten by insects or animals,” he said. “Plants with moderate linamarin levels in their leaves and that contain nearly no linamarin in their roots are both protected from herbivores and contain far less of the cyanogen in their roots.”

Cyanide forms when cassava is processed. But the toxin is volatile and is released into the air, rather than remaining in the food. Correct processing methods ensure that the cyanogen content in cassava plants will be within an acceptable range, Sayre said. (The United Nations’ Food and Agriculture Organization has established maximum recommended cyanide levels for foods.)

“In African countries, it’s mostly women and children who are susceptible to cyanide poisoning,” Sayre said. “Women are usually charged with processing the plant, which leaves them susceptible to inhaling cyanide gas. Cyanide can poison a person by either inhalation or ingestion.”

The shelf life of a cassava root is very short once it’s removed from the stem, so there’s an urgency to get the food to market.

“Roots can turn to mush in less than a week,” Sayre said. “Cassava’s fresh market time is very small, so it has to be processed immediately.”

And that’s where consumers can run into problems -- the rush to get cassava to the market may keep some batches of cassava from being processed properly. Even if the plant is properly processed, exposure to the volatile cyanide can cause health problems in people charged with processing the roots and leaves.

While cassava roots contain less than 10 percent of the linamarin level found in cassava leaves, it’s the long-term exposure to cyanide that presents a threat to humans.

“Linamarin is converted to cyanide when eaten,” Sayre said. “Repeated exposure of low doses of cyanide over time can lead to health problems.

“But these cyanogen-free plants represent a safer and more marketable food product as well as a tool to determine the role of cyanogens in protection against insect pests and crop productivity.”

“However, preliminary studies indicate that linamarin may be important in the transport of nitrogen from cassava leaves to its roots in young plants,” he continued. “Plants producing varying levels of linamarin need to be tested in field trials to determine if the inhibition of linamarin synthesis affects plant yield.”

Grants from the Rockefeller Foundation, the Consortium for Plant Biotechnology Research, the Cassava Biotechnology Network and Ohio State University supported this research.


Contact: Richard Sayre, 614-292 2587; Sayre.2@osu.edu
Written by Holly Wagner, 614-292-8310; Wagner.235@osu.edu

Holly Wagner | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/cassava.htm
http://link.springer-ny.com/link/service/journals/00425/

More articles from Agricultural and Forestry Science:

nachricht Tropical deforestation releases large amounts of soil carbon
28.07.2015 | Georg-August-Universität Göttingen

nachricht Drivers of temporal changes in temperate forest plant diversity
27.07.2015 | Friedrich-Schiller-Universität Jena

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>