Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humongous fungus a new kind of individual

27.03.2003


The world’s biggest fungus, discovered in Oregon’s Blue Mountains in 2001, is challenging traditional notions of what constitutes an individual. The underground fungus--estimated to be between 2000 and 8500 years old--is also deepening our understanding of the ecosystem, with possible implications for the management of Canadian forests, according to a paper by the discoverers (B.A. Ferguson, T.A. Dreisbach, C.G. Parks, G.M. Filip, and C.L. Schmitt) published March 17 on the Web site of the Canadian Journal of Forest Research (http://cjfr.nrc.ca).



The clone of Armillaria ostoyae--the tree-killing fungus that causes Armillaria root disease--covers an area of 9.65 square kilometres, about the size of 6000 hockey rinks or 1600 football fields.

"It’s one organism that began as a microscopic spore and then grew vegetatively, like a plant," says Dr. Catherine Parks, a research plant pathologist with the United States Department of Agriculture (USDA) Forest Service and co-ordinator of the research team. "From a broad scientific view, it challenges what we think of as an individual organism."


In the paper, being published in the April 2003 issue of the Canadian Journal of Forest Research, researchers at the USDA Forest Service reveal their findings about the huge fungus, including how they discovered it was a single organism, and the potential implications for forest management practices.

Armillaria root disease is a pernicous killer of trees in many parts of the U.S. and across southern Canada. It has been estimated to cause growth loss and mortality of 3.8 million cubic meters of lumber annually in B.C. The fungus spreads mainly along tree roots, but also through the soil using shoestring-like structures called rhizomorphs.

By collecting samples of the fungus from different points in the forest and observing the reactions as they were grown together on Petri dishes, researchers mapped the range of the fungus and confirmed its genetic identity. Said Dr. Parks, "The technique is actually very simple, and makes use of this fungus’ own ability to distinguish one individual from another."

Researchers thought that individual fungus organisms grew in distinct clusters in the forest, marked by the ring-shaped patches of dead trees that they spotted during overhead flights. No one expected to find that the well-separated clusters represented one contiguous organism. "If you could take away the soil and look at it, it’s just one big heap of fungus with all of these filaments that go out under the surface," says Dr. Parks. "The fact that an organism like this has been growing in the forest for thousands of years really expands our view of the forest ecosystem and how it functions."

Until now, forest managers thought that humans worsened the spread of Armillaria root disease by suppressing the forest fires that are part of the natural cycle of renewal. "But because this fungus is thousands of years old, and grew long before fire systems were influenced by man, we know this isn’t the case," says Dr. Parks. "It also means that fire does not naturally control this disease."

This means that the fungus, in all its far-flung glory, is a natural participant in the forest cycle. In fact, it is often present in areas with little visible tree damage. Knowing this, forest managers may be more prudent when using traditional management practices such as selected cutting. "After you cut an infected tree, the entire root system can be colonized by the fungus, which then increases the disease potential around that area," says Dr. Parks.

Forest managers may also want to consider which species to focus on during planting and harvesting. "When planting, they may want to introduce less susceptible trees--such as western larch, western white pine, and ponderosa pine--and harvest the more susceptible trees during thinning."

According to Cindy Prescott, co-editor of the Canadian Journal of Forest Research, the findings are an exciting example of developments in forest research. "This study is an indication of the kind of discoveries now possible as scientists apply these new and developing techniques to explore the world below ground. It’s just the tip of the iceberg of new knowledge, but these novel findings are already giving us new insights into how forests work, and causing us to rethink fundamental ideas like, what is an individual, and what is a species?"


The Canadian Journal of Forest Research is published by the Research Press of Canada’s National Research Council (NRC).

Article also available on the Canadian Journal of Forest Research Web site: http://cjfr.nrc.ca

For more information, contact:

Dr. Catherine Parks
Research plant pathologist
USDA Forest Service
541-962-6531
cparks01@fs.fed.us

Cindy Prescott
Co-editor, Canadian Journal of Forest Research
604-822-4701
cpres@interchange.ubc.ca

References

Ferguson, B.A, Dreisbach, T.A., Parks, C.G., Filip, G.M., and Schmitt, C.L. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. volume 33, 2003.


Dr. Catherine Parks | EurekAlert!
Further information:
http://cjfr.nrc.ca

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>