Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humongous fungus a new kind of individual

27.03.2003


The world’s biggest fungus, discovered in Oregon’s Blue Mountains in 2001, is challenging traditional notions of what constitutes an individual. The underground fungus--estimated to be between 2000 and 8500 years old--is also deepening our understanding of the ecosystem, with possible implications for the management of Canadian forests, according to a paper by the discoverers (B.A. Ferguson, T.A. Dreisbach, C.G. Parks, G.M. Filip, and C.L. Schmitt) published March 17 on the Web site of the Canadian Journal of Forest Research (http://cjfr.nrc.ca).



The clone of Armillaria ostoyae--the tree-killing fungus that causes Armillaria root disease--covers an area of 9.65 square kilometres, about the size of 6000 hockey rinks or 1600 football fields.

"It’s one organism that began as a microscopic spore and then grew vegetatively, like a plant," says Dr. Catherine Parks, a research plant pathologist with the United States Department of Agriculture (USDA) Forest Service and co-ordinator of the research team. "From a broad scientific view, it challenges what we think of as an individual organism."


In the paper, being published in the April 2003 issue of the Canadian Journal of Forest Research, researchers at the USDA Forest Service reveal their findings about the huge fungus, including how they discovered it was a single organism, and the potential implications for forest management practices.

Armillaria root disease is a pernicous killer of trees in many parts of the U.S. and across southern Canada. It has been estimated to cause growth loss and mortality of 3.8 million cubic meters of lumber annually in B.C. The fungus spreads mainly along tree roots, but also through the soil using shoestring-like structures called rhizomorphs.

By collecting samples of the fungus from different points in the forest and observing the reactions as they were grown together on Petri dishes, researchers mapped the range of the fungus and confirmed its genetic identity. Said Dr. Parks, "The technique is actually very simple, and makes use of this fungus’ own ability to distinguish one individual from another."

Researchers thought that individual fungus organisms grew in distinct clusters in the forest, marked by the ring-shaped patches of dead trees that they spotted during overhead flights. No one expected to find that the well-separated clusters represented one contiguous organism. "If you could take away the soil and look at it, it’s just one big heap of fungus with all of these filaments that go out under the surface," says Dr. Parks. "The fact that an organism like this has been growing in the forest for thousands of years really expands our view of the forest ecosystem and how it functions."

Until now, forest managers thought that humans worsened the spread of Armillaria root disease by suppressing the forest fires that are part of the natural cycle of renewal. "But because this fungus is thousands of years old, and grew long before fire systems were influenced by man, we know this isn’t the case," says Dr. Parks. "It also means that fire does not naturally control this disease."

This means that the fungus, in all its far-flung glory, is a natural participant in the forest cycle. In fact, it is often present in areas with little visible tree damage. Knowing this, forest managers may be more prudent when using traditional management practices such as selected cutting. "After you cut an infected tree, the entire root system can be colonized by the fungus, which then increases the disease potential around that area," says Dr. Parks.

Forest managers may also want to consider which species to focus on during planting and harvesting. "When planting, they may want to introduce less susceptible trees--such as western larch, western white pine, and ponderosa pine--and harvest the more susceptible trees during thinning."

According to Cindy Prescott, co-editor of the Canadian Journal of Forest Research, the findings are an exciting example of developments in forest research. "This study is an indication of the kind of discoveries now possible as scientists apply these new and developing techniques to explore the world below ground. It’s just the tip of the iceberg of new knowledge, but these novel findings are already giving us new insights into how forests work, and causing us to rethink fundamental ideas like, what is an individual, and what is a species?"


The Canadian Journal of Forest Research is published by the Research Press of Canada’s National Research Council (NRC).

Article also available on the Canadian Journal of Forest Research Web site: http://cjfr.nrc.ca

For more information, contact:

Dr. Catherine Parks
Research plant pathologist
USDA Forest Service
541-962-6531
cparks01@fs.fed.us

Cindy Prescott
Co-editor, Canadian Journal of Forest Research
604-822-4701
cpres@interchange.ubc.ca

References

Ferguson, B.A, Dreisbach, T.A., Parks, C.G., Filip, G.M., and Schmitt, C.L. Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can. J. For. Res. volume 33, 2003.


Dr. Catherine Parks | EurekAlert!
Further information:
http://cjfr.nrc.ca

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>