Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate affects recent crop yield gains

14.02.2003


Scientists at the Department of Global Ecology of the Carnegie Institution of Washington in Stanford, California, have found that climate trends significantly affect corn and soybean yields. David Lobell and Dr. Gregory Asner analyzed 17 years of data on crop yields, temperature, precipitation, and solar radiation throughout the U.S. for their study and published their results in the February 14, 2003, issue of Science.



The investigation showed that gradual increases in temperature cause significant decreases in productivity for the two major United States crops, corn and soybean. "We found that climate is a surprisingly important factor in crop yield trends," stated Lobell.

Most studies on climate changes and crop production have not looked at these kinds of data over this many years. Dr. Christopher Field, director of the Department of Global Ecology, noted: "What makes this study unique is that they looked at several regions that have experienced the same changes in technology, but different changes in climate. This allowed them to separate the contributions of climate and technology to yield trends, which has been hard to do in the past."


When the investigators factored in climate changes over the study period, they found that the gains in crop yield from improved management practices were about 20% lower than previously believed. "Most future projections of food supply are based on recent trends in crop yield growth, ignoring the effects of climate," remarked Lobell. "But our study shows that recent trends in climate have actually helped farmers’ yields, so in terms of management we may not be doing as well as we have thought."

Dr. Asner added: "Our results also suggest that global warming will affect food production. If the principal corn and soybean areas of the Midwest see rising temperatures, we will likely see negative impacts on crop yields there. According to our calculations, we can expect a 17% decline in yield of these crops for a one degree increase in growing-season temperature."

"The continuing growth of the human population already challenges the agricultural sector, and climate change may make efforts to increase yields even more difficult. It will take further research and collaboration between land managers, decision-makers, and scientists to meet these challenges," concluded Lobell.


###
The Department of Global Ecology is one of six departments of the Carnegie Institution of Washington. . See http://jasper.stanford.edu/globalecology/CIWDGE/CIWDGE.HTML for more information The other five departments are the Department of Terrestrial Magnetism and the Geophysical Laboratory in Washington, D.C., the Department of Embryology in Baltimore, Maryland, the Observatories in Pasadena, California, and the Department of Plant Biology in Stanford, California.

David Lobell, Greg Asner | EurekAlert!
Further information:
http://www.ciw.edu/

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>