Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IFDC innovative technology increases farmers’ agricultural productivity, maintains resource base

17.12.2002


IFDC — an International Center for Soil Fertility and Agricultural Development — has developed an innovative approach to agricultural development called Integrated Soil Fertility Management (ISFM), involving not just farmers, researchers, and extension workers but also bankers and traders, including inputs dealers and fertilizer enterprises. The holistic approach, based on the agribusiness system at the regional level, combines participatory methods to develop and extend ISFM technologies and support institutional changes that enable their adoption and facilitate effective linkages between farmers and the "market."



The primary donors for this work are the U. S. Agency for International Development (USAID) and the International Fertilizer Industry Association (IFA). Another project sponsored by the International Fund for Agricultural Development (IFAD) enhances the ISFM work.

"ISFM-based intensification technologies are based on the combined use of soil amendments and chemical fertilizers," says Dr. Arno Maatman, Leader, IFDC Input Accessibility Program. "Different amendments exist, and their requirement depends on soil characteristics. Organic resources are used for improved soil organic matter status. Limestone can be used to improve the pH level; soluble sources of phosphorus and phosphate rock are frequently used to increase the availability of phosphorus. The more difficult challenge is to improve the status of soil organic matter. More and better organic matter is needed. ISFM technologies that integrate the use of inorganic fertilizers with crop residue recycling, (green) manure, fodder crops, mixed cropping, crop rotation and agroforestry can improve the availability and quality of organic matter. The technologies lead in time to improved fertilizer use efficiency."


The new approach increases the accessibility of fertilizer for farmers, raises the agricultural productivity level, and maintains the natural resource base. Its potential has been demonstrated from the West African "Gold Coast" to the Sahel, for crops like maize, sorghum, millet and rice. ISFM technologies produce yields that are 2-3 times higher than average yields. Return on (invested) capital exceeds 100%, with a value: cost ratio well above 2, and returns to family labor are 2-6 times higher than the average salary rate prevalent in sub-Saharan Africa. The ISFM project is now operating in Benin, Burkina Faso, Ghana, Mali, Niger, Nigeria, and Togo with more than 2,000 farmers in more than 100 villages participating. Emphasis is placed on participatory approaches to develop ISFM technologies that are suitable to agroecological and socioeconomic conditions of farmers and that consider their needs, interests, and capacities. Thus, farmers select, experiment, and adapt in their own fields the methods developed with research and extension staff. This freedom of choice and action allows for innovation.

One of the farmers who has benefited from this technology is Edah Kehinnou, a woman farmer from the small village of Ahohoue, Benin. Kehinnou grows crops of maize, cowpeas, and groundnuts on her three fields. The ISFM package that she uses includes phosphate rock, legumes (cowpeas or groundnut) and other fertilizers. On her farm of less than 1 ha, she applied 300 kg of phosphate rock and harvested 4,175 kilograms per hectare of maize. During the second season, she harvested 120 kilograms of cowpeas on two-tenths hectare of land. She prefers to grow cowpeas rather than mucuna because the cowpeas not only may add nitrogen to the soil but also provide needed revenue. This year the rains came later so she applied fertilizer later and in a smaller dosage. When the rains come later, these farmers prefer to reduce their risks and try to apply smaller dosages of fertilizer in sequences--a "wait and see approach." Kehinnou treated the cowpeas four times with crop protection products (CPPs) to avoid insects. When farmers like her do not have money to purchase CPPs, they manufacture their own using leaves of the neem tree, locally produced soap, and other natural remedies.

"IFDC collaborates with both international and national agricultural research institutes to develop new ideas on ISFM technologies for different agroecological zones," Maatman says. "Technological options that appear to be of interest for the ISFM village-level projects are considered for experimentation through a participatory screening process that involves IFDC, the partner institutions, and the target farmers. Farmer’s experiments and alternative ideas are also considered. The process results in the design of mutual learning plots, i.e., experiments set up with the farmers to test and fine tune ISFM options."


IFDC — an International Center for Soil Fertility and Agricultural Development — is a public, international organization (PIO), which was founded in 1974 to assist in the quest for global food security. The nonprofit Center’s mission is to increase agricultural productivity through the development and transfer of effective, environmentally sound plant nutrient technology and agricultural marketing expertise.

Marie K. Thompson | EurekAlert!
Further information:
http://ifdc.org/

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>