Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IFDC innovative technology increases farmers’ agricultural productivity, maintains resource base

17.12.2002


IFDC — an International Center for Soil Fertility and Agricultural Development — has developed an innovative approach to agricultural development called Integrated Soil Fertility Management (ISFM), involving not just farmers, researchers, and extension workers but also bankers and traders, including inputs dealers and fertilizer enterprises. The holistic approach, based on the agribusiness system at the regional level, combines participatory methods to develop and extend ISFM technologies and support institutional changes that enable their adoption and facilitate effective linkages between farmers and the "market."



The primary donors for this work are the U. S. Agency for International Development (USAID) and the International Fertilizer Industry Association (IFA). Another project sponsored by the International Fund for Agricultural Development (IFAD) enhances the ISFM work.

"ISFM-based intensification technologies are based on the combined use of soil amendments and chemical fertilizers," says Dr. Arno Maatman, Leader, IFDC Input Accessibility Program. "Different amendments exist, and their requirement depends on soil characteristics. Organic resources are used for improved soil organic matter status. Limestone can be used to improve the pH level; soluble sources of phosphorus and phosphate rock are frequently used to increase the availability of phosphorus. The more difficult challenge is to improve the status of soil organic matter. More and better organic matter is needed. ISFM technologies that integrate the use of inorganic fertilizers with crop residue recycling, (green) manure, fodder crops, mixed cropping, crop rotation and agroforestry can improve the availability and quality of organic matter. The technologies lead in time to improved fertilizer use efficiency."


The new approach increases the accessibility of fertilizer for farmers, raises the agricultural productivity level, and maintains the natural resource base. Its potential has been demonstrated from the West African "Gold Coast" to the Sahel, for crops like maize, sorghum, millet and rice. ISFM technologies produce yields that are 2-3 times higher than average yields. Return on (invested) capital exceeds 100%, with a value: cost ratio well above 2, and returns to family labor are 2-6 times higher than the average salary rate prevalent in sub-Saharan Africa. The ISFM project is now operating in Benin, Burkina Faso, Ghana, Mali, Niger, Nigeria, and Togo with more than 2,000 farmers in more than 100 villages participating. Emphasis is placed on participatory approaches to develop ISFM technologies that are suitable to agroecological and socioeconomic conditions of farmers and that consider their needs, interests, and capacities. Thus, farmers select, experiment, and adapt in their own fields the methods developed with research and extension staff. This freedom of choice and action allows for innovation.

One of the farmers who has benefited from this technology is Edah Kehinnou, a woman farmer from the small village of Ahohoue, Benin. Kehinnou grows crops of maize, cowpeas, and groundnuts on her three fields. The ISFM package that she uses includes phosphate rock, legumes (cowpeas or groundnut) and other fertilizers. On her farm of less than 1 ha, she applied 300 kg of phosphate rock and harvested 4,175 kilograms per hectare of maize. During the second season, she harvested 120 kilograms of cowpeas on two-tenths hectare of land. She prefers to grow cowpeas rather than mucuna because the cowpeas not only may add nitrogen to the soil but also provide needed revenue. This year the rains came later so she applied fertilizer later and in a smaller dosage. When the rains come later, these farmers prefer to reduce their risks and try to apply smaller dosages of fertilizer in sequences--a "wait and see approach." Kehinnou treated the cowpeas four times with crop protection products (CPPs) to avoid insects. When farmers like her do not have money to purchase CPPs, they manufacture their own using leaves of the neem tree, locally produced soap, and other natural remedies.

"IFDC collaborates with both international and national agricultural research institutes to develop new ideas on ISFM technologies for different agroecological zones," Maatman says. "Technological options that appear to be of interest for the ISFM village-level projects are considered for experimentation through a participatory screening process that involves IFDC, the partner institutions, and the target farmers. Farmer’s experiments and alternative ideas are also considered. The process results in the design of mutual learning plots, i.e., experiments set up with the farmers to test and fine tune ISFM options."


IFDC — an International Center for Soil Fertility and Agricultural Development — is a public, international organization (PIO), which was founded in 1974 to assist in the quest for global food security. The nonprofit Center’s mission is to increase agricultural productivity through the development and transfer of effective, environmentally sound plant nutrient technology and agricultural marketing expertise.

Marie K. Thompson | EurekAlert!
Further information:
http://ifdc.org/

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>