Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSF-led team reports new test improves detection of prions in animals

21.10.2002


UCSF-led researchers have developed a highly sensitive, automated test for detecting prions (PREE-on) that they report significantly improves the accuracy and speed of detecting the various forms of the infectious agent, which causes a set of neurodegenerative diseases, in cattle, sheep, deer and elk.



Because the test is automated, the researchers say, it could be used for high-throughput testing of brain samples of cattle with bovine spongiform encephalopathy (BSE), or "mad cow" disease, as well as deer and elk with chronic wasting disease (CWD).

The test, an immunological probe, or "immunoassay," uses a novel strategy and newly developed, high-affinity antibodies to reveal and measure prions in brain tissue. As a result, it is able to directly measure infectious, abnormal prion protein.


The high sensitivity of the test in detecting BSE and CWD prions, reported in the October 21 on-line version of Nature Biotechnology, culminates an effort to perfect the application of a principal that the UCSF team firsts reported in 1998 in a study in hamsters.

Known as a conformation-dependent immunoassay (CDI), the test is able to detect much smaller levels of the infectious prion protein than can be seen with the current standard immunological procedures. Those older methods, which detect only fragments of infectious prion protein that are resistant to an enzyme known as protease, are currently used in the United Kingdom and Europe to detect prion-infected brain in cattle.

The new test in fact matches the sensitivity of what is currently the most reliable technique for determining the level of prion infectivity in a tissue. This bioassay, which has a time lag that makes it impractical for the rapid detection of prions in large-scale testing in tissue, involves injecting brain tissue from cattle with BSE into mice genetically engineered to over-express bovine prion protein. The expression of the bovine prion protein makes the mice highly sensitive to bovine prions from infected cattle. UCSF researchers previously reported that they had developed a bioassay for infectious prions in genetically engineered (or transgenic) mice. In the current study, the researchers report that this bioassay for infectious prions in genetically engineered (or transgenic) mice may detect up to 10,000-fold more prions than standard bioassay in normal mice.

"The conformation-dependent immunoassay essentially lowers the threshold for detection of bovine spongiform encephalopathies," says the lead author of the study, Jiri Safar, MD, UCSF associate adjunct professor of neurology and a member of the UCSF Institute for Neurodegenerative Diseases, which is directed by co-senior author Stanley B. Prusiner(1), MD, UCSF professor of neurology and biochemistry.

"We believe that by applying the test to cattle we should significantly reduce human exposure to bovine prions," says Safar. In addition, he says, while scientists do not know whether chronic wasting disease in deer and elk can be transmitted to humans, the new test "offers a very important first step toward being able to diagnose chronic wasting disease early and to study the biological properties of CWD prions."

More broadly, says Safar, the CDI could be applied to studies of other neurodegenerative diseases, such as Alzheimer’s disease, that also involve the transformation of normally shaped proteins into abnormal forms. The goal of such studies, he said, would be to detect the development of transformed proteins before the symptoms of a neurodegenerative disease develop.

In the current study, the CDI was used to detect infectious prion protein in brain tissue samples taken from BSE-infected U.K. cattle, and U.S. CWD-infected deer and elk. In 1,729 tests, the CDI correctly identified samples of diseased and normal tissue with 100 percent accuracy.

In its current capacity, the CDI test could be used in Great Britain and Europe to detect BSE prions in cattle before potentially contaminated meat enters the human food supply. In the United States, it could also be used to test deer and elk for chronic wasting disease prions.

However, the ultimate goal of the technology, the researchers say, would be to apply the assay to testing for prions while animals are still alive, perhaps using blood or some peripheral tissue such as muscle. Early evidence in hamsters and mice suggest this might be possible. In this case, the test could also potentially be used to diagnose patients with one of the several human forms of prion disease, known as Creutzfeldt-Jakob disease.

The need for a more sensitive test

The need for a more sensitive test to detect infectious prion proteins stems from the fact that studies increasingly show that the bioassays traditionally used to detect whether animal tissue is infected are not sensitive enough, and therefore have likely misrepresented the frequency of animals being infected.

In the current study, the researchers report that while the concentration of BSE prions in brain tissue was 1,000 infectious units per gram when measured in normal mice, it was 10,000,000 infectious units per gram when measured in mice genetically engineered to express multiple copies of the bovine prion protein gene. This finding is of concern because early on in the BSE epidemic in Great Britain decisions on what precautions to take were based on titrations in normal mice. Thus, says Safar, they underestimated the likely threat of infectivity in many organs.

"This finding indicates that previous attempts to quantify BSE and scrapie prions in milk or non-neural tissues, such as muscle, may have underestimated infectious titers by as much as a factor of 10,000, raising the possibility that prions could be present in these products in sufficient quantities to pose risk to humans," says Safar.

The new transgenic mice, developed in the Prusiner lab, provide information about infectivity within 220 to 400 days, thus accelerating the accumulation of data. The Prusiner lab is now using the mouse model to test tissue samples for the UK Department of Environment, Food and Rural Affairs.

"At present, we have no data on the frequency of sub-clinical prion infections in livestock," says Safar. "Because most livestock destined for human consumption are slaughtered by two years of age, many animals may be infected but never show clinical signs of central nervous system dysfunction since incubation periods generally exceed three years."

"The high sensitivity of the CDI, and the availability of a manual or automated version to test large numbers of animals may profoundly alter our view of the epidemiology of prion diseases," says Safar.

The study was done in conjunction with researchers at The Scripps Research Institute, including senior author R. Anthony Williamson PhD, and Dennis R. Burton, PhD, in the Department of Immunology and Molecular Biology, whose team developed the high-affinity antibodies used in the test.

In 2001, UCSF licensed the technology for CDI, developed in the Prusiner lab, to InPro Biotechnology Inc., of South San Francisco, California, which Prusiner founded. Prusiner, Safar and some other members of the Institute for Neurodegenerative Diseases are scientific advisors to, or own stock in, the company.

The automated CDI is one of several immunoassay tests currently being evaluated by the European Community in a formal validation trial. However, it is the only test that is not based on the traditional detection of the protease-resistant fragment of infectious prion protein. The test received a perfect record in the first part of the trial, which involved testing 200 brainstem samples provided by the EC. The results are posted at: http://www.irmm.jrc.be/. A field trial, currently underway, involves testing the test in numerous labs throughout Europe. The UCSF team hopes that the second half of the validation, which is being performed by scientists at InPro Biotechnology, will be completed some time this winter.

How the conformation-dependent immunoassay works

One of the many challenges in attempting to detect infectious prion protein is distinguishing the infectious form from the normal prion protein that exists in a healthy state in humans and animals.

The standard technique, developed in the Prusiner lab 20 years ago, involves using an enzyme known as a protease to destroy normal prion protein (PrPC), which is ubiquitous in brain tissue. Once this occurs, scientists apply fluorescently lit antibodies that react with residues of the relatively resistant abnormal prion protein (PrPSc), thereby highlighting it.

The limitation of this technique is that scientists have since learned that there is a large part of the abnormal prion protein that is protease sensitive, and that portion escapes detection by the standard technique. Thus, this traditional method underestimates the level of PrPSc in tissue.

The new approach involves revealing the region of PrPSc that is exposed in the normal PrPC but is buried in infectious PrPSc, using high affinity, newly generated antibodies that identify PrPSc through the distinct shape of the molecule, independent of proteolytic treatments. This makes it possible to detect potentially large concentrations of protease sensitive PrPSc molecules.

The first step in using the immunoassay involves exposing a tissue extract containing infectious prion protein in its natural state to the antibody and measuring the reactivity. Next, the prion protein is unfolded by chemical means so that the hidden region is exposed. Predictably, the antibody’s immunoreactivity to this denatured region, as measured by its degree of binding to the molecule, is much higher than it is to the diseased protein in its native state. The ratio of denatured to native infectious prion protein indicates the amount of PrPSc.

The test offers the potential for rapid prion strain typing, which is an essential tool for identifying those prion isolates that are readily transmitted to humans, says Safar. There is a theoretical possibility that BSE may have infected not only cattle but also sheep, he says. Because BSE is transmissible to humans and scrapie is not, the ability to identify BSE in sheep and to distinguish it from scrapie is increasingly important.

Jennifer O’Brien | EurekAlert!

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>