Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Address Action Pesticides

28.05.2008
Specialists of the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences), Siberian Federal University and Institute of Forest (Siberian Branch, Russian Academy of Sciences) are working to produce environmentally safe pesticides.

New preparations are a mixture of pesticides with biodegradable polymers. Polymers gradually degrade in the soil, and pesticides get slowly released and get exactly in the place where they were deposited.

Pesticides are hundreds of active substances and dozens of thousands of preparations. Contemporary pesticides are used in the form of powder and emulsions; under the influence of precipitations and wind they do not only get to their destination but also disperse at large areas thus contaminating environment.

Unfortunately, it is sometimes rather difficult to identify their presence in water, soil and air, besides little is known about toxic properties of multiple preparations and about consequences of their longstanding influence on the environment. For this reason contemporary pesticides are dangerous for people and environment. At that, they do not perform their immediate task – they do not protect plants from vermin, a lot of which have developed resistance to pesticides. Therefore, agriculture needs fundamentally new protection, which could enable address delivery of chemicals.

To this end, the pesticide is enclosed into a matrix made of biodegradable materials. The pesticide enclosed in such a matrix will not get into water or air, it will remain where it was deposited (“packed”) and will gradually release from the polymer carrier. In some countries, ethyl-cellulose, polyurethane and sodium alginate are already used for this purpose. The researchers from Krasnoyarsk suggest to use for pesticide depositing the polymer of microbiological origin actively degradable in the soil (copolymer of hydroxybutyrate and hydroxyvalerianate), which was synthesized at the Institute of Biophysics of the Earth (Russian Academy of Sciences). This polymer fully degrades under the influence of soil microorganisms, therefore it is not accumulated either in soil or in water and does not contaminate outskirts like plastic bottles do. Destruction takes place within several months, which allows to develop preparations of lasting action.

The researchers have tested two preparations. One of them, a complex action insecticide – a- hexachlorocyclohexane – is used to fight harmful insects and utilized for seed sterilization to protect sprouts from soil vermin. The other chemical – Lindane – is an efficient insecticide with a wide action spectrum. The preparations were mixed with well-milled powdery polymer, and tablets (which are 3 millimeters in diameter, their weight making 20-22 grams) were pressed out of obtained mixture. Preliminary weighed samples were deposited into the lawn-and-garden soil and kept there for 12 weeks at a definite temperature and humidity, periodically taking samples to determine remaining mass of the polymer and pesticide concentration in the soil.

Soil microorganisms perceived the polymer as a nutritious product and actively destroyed it. The bulk of the polymer was destroyed in the soil within 40 to 50 days since the begging of the experiment, by that time, there remained no more than 5% of head grade in the tablet. Pesticides got out of the tablets into the soil unhurriedly. During the first 30 to 40 days, no more than 2% to 3% of a-hexachlorocyclohexane was released, and in 70 to 80 days, the tablet was released of 10% to 12% of the preparation. The Lindane output, the content of which was higher in the polymer matrix, was about 30% by the end of the experiment.

By the example of two pesticides the researchers have proved that the preparations enclosed into a biodagragable polymer matrix are leaving it gradually, without abrupt discharges. By varying the polymer/preparation ratio, the researchers can regulate the rate of pesticide release into the soil.

Olga Myznikova | alfa
Further information:
http://www.informnauka.ru

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>