Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Address Action Pesticides

Specialists of the Institute of Biophysics (Siberian Branch, Russian Academy of Sciences), Siberian Federal University and Institute of Forest (Siberian Branch, Russian Academy of Sciences) are working to produce environmentally safe pesticides.

New preparations are a mixture of pesticides with biodegradable polymers. Polymers gradually degrade in the soil, and pesticides get slowly released and get exactly in the place where they were deposited.

Pesticides are hundreds of active substances and dozens of thousands of preparations. Contemporary pesticides are used in the form of powder and emulsions; under the influence of precipitations and wind they do not only get to their destination but also disperse at large areas thus contaminating environment.

Unfortunately, it is sometimes rather difficult to identify their presence in water, soil and air, besides little is known about toxic properties of multiple preparations and about consequences of their longstanding influence on the environment. For this reason contemporary pesticides are dangerous for people and environment. At that, they do not perform their immediate task – they do not protect plants from vermin, a lot of which have developed resistance to pesticides. Therefore, agriculture needs fundamentally new protection, which could enable address delivery of chemicals.

To this end, the pesticide is enclosed into a matrix made of biodegradable materials. The pesticide enclosed in such a matrix will not get into water or air, it will remain where it was deposited (“packed”) and will gradually release from the polymer carrier. In some countries, ethyl-cellulose, polyurethane and sodium alginate are already used for this purpose. The researchers from Krasnoyarsk suggest to use for pesticide depositing the polymer of microbiological origin actively degradable in the soil (copolymer of hydroxybutyrate and hydroxyvalerianate), which was synthesized at the Institute of Biophysics of the Earth (Russian Academy of Sciences). This polymer fully degrades under the influence of soil microorganisms, therefore it is not accumulated either in soil or in water and does not contaminate outskirts like plastic bottles do. Destruction takes place within several months, which allows to develop preparations of lasting action.

The researchers have tested two preparations. One of them, a complex action insecticide – a- hexachlorocyclohexane – is used to fight harmful insects and utilized for seed sterilization to protect sprouts from soil vermin. The other chemical – Lindane – is an efficient insecticide with a wide action spectrum. The preparations were mixed with well-milled powdery polymer, and tablets (which are 3 millimeters in diameter, their weight making 20-22 grams) were pressed out of obtained mixture. Preliminary weighed samples were deposited into the lawn-and-garden soil and kept there for 12 weeks at a definite temperature and humidity, periodically taking samples to determine remaining mass of the polymer and pesticide concentration in the soil.

Soil microorganisms perceived the polymer as a nutritious product and actively destroyed it. The bulk of the polymer was destroyed in the soil within 40 to 50 days since the begging of the experiment, by that time, there remained no more than 5% of head grade in the tablet. Pesticides got out of the tablets into the soil unhurriedly. During the first 30 to 40 days, no more than 2% to 3% of a-hexachlorocyclohexane was released, and in 70 to 80 days, the tablet was released of 10% to 12% of the preparation. The Lindane output, the content of which was higher in the polymer matrix, was about 30% by the end of the experiment.

By the example of two pesticides the researchers have proved that the preparations enclosed into a biodagragable polymer matrix are leaving it gradually, without abrupt discharges. By varying the polymer/preparation ratio, the researchers can regulate the rate of pesticide release into the soil.

Olga Myznikova | alfa
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>