Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laurel Wilt of Redbay and Sassafras: Will Avocados be Next?

04.04.2008
Scientists with the USDA Forest Service Southern Research Station (SRS), Iowa State University, and the Florida Division of Forestry have provided the first description of a fungus responsible for the wilt of redbay trees along the coasts of South Carolina, Georgia, and Florida.

In the February issue of Plant Disease, SRS plant pathologist Stephen Fraedrich and fellow researchers provide results from their assessment of the fungus, the beetle that carries it, and their combined effect on redbay and other members of the laurel family, including sassafras, spicebush, and avocado.

Extensive mortality of redbay, an attractive evergreen tree common along the coasts of the southeastern United States, has been observed in South Carolina and Georgia since 2003. Though the wilt was at first attributed to drought, the cause was soon found to be a fungal pathogen and the exotic redbay ambrosia beetle, Xyleborus glabratus, a native to Southeast Asia that was first found in the area in 2002. Many ambrosia beetles carry species of fungi as food for their larvae; a previously undescribed fungus in the genus Raffaelea is a fungal symbiont of this ambrosia beetle.

To determine if the fungus was the cause of the wilt, Fraedrich and his colleagues inoculated redbay trees and containerized seedlings with the Raffaelea fungus; the plants died within 5 to 12 weeks. To connect fungus and beetle, they also exposed redbay seedlings to X. glabratus beetles; the ambrosia beetles tunneled into almost all of the plants, causing 70 percent of them to die. The researchers found the fungus in 91 percent of the beetle-attacked plants.

"These experiments showed that the Raffaelea species we isolated from wilted trees and from the redbay ambrosia beetle is the cause of redbay wilt," says Fraedrich. "The fungus, which is routinely isolated from the heads of X. glabratus ambrosia beetles, is apparently introduced into healthy redbay during beetle attacks on stems and branches."

Redbays are common along Southeastern coast, and both residents and visitors are disturbed by the massive mortality. Deer browse on the evergreen foliage of the tree, and the fruit is eaten by songbirds, wild turkeys, and other animals. Redbay is also the primary host for the larvae of the palamedes swallowtail butterfly. But it’s not just the redbays that plant pathologists are worried about.

"The fungus we isolated has also been associated with the death of other trees in the laurel family, and the Raffaelea sp. has been isolated from wilted sassafras, pondberry and pondspice," says Fraedrich. "Our inoculation studies have shown that the fungus is deadly to these species as well as to spicebush, and avocado, but not to red maple."

The researchers concluded that there is reason to be concerned about the spread of the wilt to other members of the laurel family, which are common components in forests across the United States and other areas of the Americas. Recent studies have shown that California laurel, a West Coast species in the Lauraceae, is also susceptible to laurel wilt.

"We are also very concerned about avocado, a species indigenous to Central America which is grown commercially in Florida and alifornia," says Fraedrich. "Our evaluation of avocado indicates that it is also susceptible to laurel wilt, and the wilt has been found recently in avocado trees growing in a residential area of Jacksonville, Florida."

For more information: Stephen Fraedrich at 706-559-4273 or sfraedrich@fs.fed.us

Read more about laurel wilt on the Forest Health Protection, Southern Region website at http://www.fs.fed.us/r8/foresthealth/laurelwilt/index.shtml

Stephen Fraedrich | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>