Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Predicting Amount of Oil in Contaminated Soils

Scientists develop faster method for testing soils around oil spills

Scientists are reporting a new technique for mapping and testing oil-contaminated soils. Traditionally, samples need to be collected from the field and returned to a lab for extensive chemical analysis, costing time and money when neither is readily available during a clean-up operation. The new method can take measurements in the field and accurately predict the total amount of petroleum contaminants in moist, unprepared soil samples.

The research team led was by soil scientists David Weindorf from Louisiana State University, Cristine Morgan of Texas Agrilife Research, and John Galbraith from Virginia Tech. The method they investigated used visible near infrared light with diffuse reflectance spectroscopy, shining a light on a sample and reading the reflecting wavelengths. This allowed the researchers to rapidly evaluate soils for the presence and amount of oil contamination quickly while in the field, without sending a sample to a laboratory and waiting for test results. The technique was used to predict total petroleum hydrocarbons in a variety of soils in southern Louisiana.

Results from the study were reported in the July-August 2010 issue of the Journal of Environmental Quality, a publication of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. Funded by the Louisiana Applied Oil Spill Research Program, the research was also presented at Clean Gulf 2009 in New Orleans, LA and the 2009 Soil Science Society of America International Annual Meetings in Pittsburgh, PA.

The study results demonstrated that the new method provided acceptable predictions of oil contamination compared to more traditional laboratory testing. The most successful method for scanning the materials was without additional drying and grinding, which released volatile hydrocarbons and caused inaccurate measurements. This indicates that on-site scanning of soils impacted by an oil spill provide superior results, since there is no loss of material through shipment or processing.

Somsubhra Chakraborty, LSU doctoral student and lead graduate student on the study, stated that “Since the task of identifying a specific petroleum signature is difficult when it is mixed with soil, the present feasibility study indicated that successful combination of chemometry and spectrometry...looks really promising for developing a methodology to identify petroleum contaminated soils in the near future. The fact that this spectroscopic technology does not need prior sample preparation has made it particularly applicable.”

Research is ongoing at the Louisiana State University AgCenter to investigate the use of this method for mapping hydrocarbon contaminant plumes and evaluate the unique light signatures of different hydrocarbon compounds (tar, crude oil, diesel, and motor oil). Other research is evaluating predictive models that would be used in conjunction with on-site analysis. Ultimately, this research may lead to the use of airborne or satellite platforms to provide a new means of assessing both known and unknown areas of oil spill contamination.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

The Journal of Environmental Quality, is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

Further reports about: Agronomy Soil Soil Science contaminated soil crop environmental risk oil spill

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>