Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photoselective film proves effective for controlling height in potted gardenia plants

05.05.2009
Nonchemical alternative reduces production costs and pollution

To grow the high-quality potted plants preferred by consumers, many growers use chemical "regulators" designed to affect plant growth and development.

The use of chemical growth retardants is standard practice in the production of compact gardenia plants; the chemicals are used to reduce plants' internode length, and encourage the production of lateral shoots that create aesthetically pleasing, spherical plants with plentiful flower buds.

Chemical sprays are effective at reducing gardenia plant height, but need to be applied regularly—a practice that increases the cost of production and contributes to environmental pollution.

Dr. Constantinos Kittas and his colleagues from the University of Thessaly School of Agricultural Sciences and the Agricultural University of Athens (Greece) published a study in HortScience in which they report on experiments with the use of a photoselective polyethylene greenhouse covering film±a less expensive and more environmentally friendly alternative to chemical treatment—for production of compact potted gardenia (Gardenia jasminoides Ellis) plants.

Two types of experiments were performed on gardenia cuttings rooted in rooting benches and on young potted plants grown under low tunnels. In both experiments, two types of cover materials were used: a photoselective polyethylene (P-PE), filtering light within the wavelength range 600 to 750 nm and a common polyethylene film (C-PE) routinely used in greenhouse practice. The experiments were carried out in a commercial plastic-covered greenhouse located on the coastal area of eastern Greece.

The researchers recorded photosynthetically active radiation, cover materials' spectral properties, air temperature, and relative humidity inside the rooting benches and under the low tunnels. Plant growth indicators (including main shoot length and leaf area and lateral shoot number, leaf area, and fresh and dry weight) were determined along the growth cycle.

According to Kittas, "The research revealed that photoselective plastic films with high values and high B:R ratios are able to reduce the height of gardenia plants. However, continued development of gardenia plants under a P-PE film results in unmarketable, low-quality plants without lateral shoots and a resulting low number of flowers."

Although the study determined that the use of photoselective plastic films for the production of potted compact gardenia plants can contribute to the reduction of chemical use, Kittas added that more information about the effect of light quality and quantity as well as the necessary period of treatment on gardenia cuttings and transplanted plants is needed before this technology is used in commercial greenhouses for compact potted gardenia plant production.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/43/7/2027

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>