Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The first neotropical rainforest was home of the Titanoboa

Smithsonian researchers working in Colombia's Cerrejón coal mine have unearthed the first megafossil evidence of a neotropical rainforest. Titanoboa, the world's biggest snake, lived in this forest 58 million years ago at temperatures 3-5 C warmer than in rainforests today, indicating that rainforests flourished during warm periods.

"Modern neotropical rainforests, with their palms and spectacular flowering-plant diversity, seem to have come into existence in the Paleocene epoch, shortly after the extinction of the dinosaurs 65 million years ago," said Carlos Jaramillo, staff scientist at the Smithsonian Tropical Research Institute.

"Pollen evidence tells us that forests before the mass extinction were quite different from our fossil rainforest at Cerrejón. We find new plant families, large, smooth-margined leaves and a three-tiered structure of forest floor, understory shrubs and high canopy."

Historically, good rock exposures and concentrated efforts by paleontologists to understand the evolution of neotropical rainforests—one of the most awe-inspiring assemblages of plant and animal life on the planet—have been lacking. "The Cerrejón mining operation is the first clear window we have to see back in time to the Paleocene, when the neotropical rainforest was first developing," said Scott Wing, a paleontologist from the Smithsonian's National Museum of Natural History.

Some of the more than 2,000 fossil leaves, including the compound leaves and pods of plants in the bean family and leaves of the hibiscus family are among the oldest, reliable evidence of these groups. This was the first time that the plant families Araceae, Arecaceae, Fabaceae, Lauraceae, Malvaceae and Menispermaceae, which are still among the most common neotropical rainforest families, all occurred together.

Many newcomers to modern rainforests remark that the leaves all look the same, a reasonable observation given that most have smooth margins and long "drip-tips" thought to prevent water from accumulating on the leaf surface.

S. Joseph Wright, senior scientist at STRI, has noted that all of the areas in the world today with average yearly temperatures greater than 28 C are too dry to support tropical rainforests. If tropical temperatures increase by 3 C by the end of this century as predicted in the 2007 report of the Intergovernmental Panel on Climate Change, "We're going to have a novel climate where it is very hot and very wet. How tropical forest species will respond to this novel climate, we don't know," said Wright.

Based on leaf shape and the size of the cold-blooded Titanoboa, Cerrejón rainforest existed at temperatures up to 30-32 C and rainfall averages exceeded 2500 mm per year.

But Titanoboa's rainforest was not as diverse as modern rainforests. Comparison of the diversity of this fossil flora to modern Amazon forest diversity and to the diversity of pollen from other Paleocene rainforests revealed that there are fewer species at Cerrejón than one would expect. Insect-feeding damage on leaves indicated that they could have been eaten by herbivores with a very general diet rather than insects specific to certain host plants.

"We were very surprised by the low plant diversity of this rainforest. Either we are looking at a new type of plant community that still hadn't had time to diversify, or this forest was still recovering from the events that caused the mass extinction 65 million years ago," said Wing. "Our next steps are to collect and analyze more sites of the same age from elsewhere in Colombia to see if the patterns at Cerrejón hold, and study additional sites that bracket the Cretaceous mass extinction, in order to really understand how the phenomenal interactions that typify modern rainforests came to be."

This work is scheduled to be published online in the Proceedings of the National Academy of Sciences during the week of Oct. 12-16.

Beth King | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>