Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Prof Develops 3-D Model for How Plants Drink

14.11.2008
Accurately predicting whether plant root systems will sip, slurp or gulp water as if through a straw, a hose or a pipe, could greatly assist in implementing modern agro-ecosystem practices.

Mario Biondini, professor in the School of Natural Resource Sciences at North Dakota State University (NDSU), Fargo, has developed a three-dimensional model that helps determine how much water plant root systems will absorb. Biondini has been invited to discuss his research at the semi-annual meeting of The Council of Scientific Society Presidents Dec. 6 to 9, 2008, in Washington, D.C.

In a global economy where scarcity of water can impact agricultural yields of crops to feed the world, Professor Biondini’s research offers additional insights on more accurately predicting how much water plants absorb through their root systems. Biondini’s research improves upon what is known as the West, Brown, and Enquist (WBE) model for scaling laws in biological networks. The WBE model predicts how closed systems will uptake water. Although it is useful to evaluate closed systems, the WBE model does not offer an optimum way to predict water uptake in open systems such as plant root systems.

In his research, Biondini used data from 1,759 plants in 77 herbaceous plant species to test his model. Such modeling includes taking into account the resistance to water flow inside the root system (longitudinal flow), as well as the water coming into the root system (transversal flow). As the model was developed, Biondini included soil type and drainage patterns. The Biondini model uses a simple root system while still illustrating the flow dynamics of a complete root network.

An accurate model such as the one developed by Biondini provides an important tool for consideration in sustainable agricultural practices. The 3-D model simulates interactions among plants and soil systems. The model 3DMIPS is used to investigate links between biological diversity, nutrient cycling, nutrient retention, water quality, productivity, stability and sustainability of natural and managed ecosystems.

Biondini used NDSU’s Center for High Performance Computing (CHPC) in the development of his model. “CHPC resources have been invaluable since implementations of the model required large memory and disc storage as well as high execution speeds for both its three-dimensional nature and the fine spatial grain needed to model water and nutrient flows at the root surface level,” Biondini said.

Funding for Biondini’s research was provided by the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service (CSREES) National Research Initiative (NRI).

Biondini received his bachelor’s degree in agronomy from the Universidad Nacional del Sur, Bahia Blanca, Argentina; his master’s degree in range ecology-systems analysis from Texas Tech University, Lubbock, Texas; and his Ph.D. in range ecosystems science-statistics from Colorado State University, Fort Collins, Colo. He joined NDSU in 1986. Biondini has been recipient of the NDSU College of Agriculture Award for Excellence in Research – Early Career, the NDSU College of Agriculture, Food Systems and Natural Resources Eugene R. Dahl Excellence in Research Award – Senior Career, and the NDSU Fred Waldron Award for Outstanding Research.

About NDSU
With a reputation for excellence in teaching and multidisciplinary research, North Dakota State University, Fargo, links academics to real world opportunities. As a metropolitan land grant institution with more than 13,000 students, NDSU is listed in the top 100 of several National Science Foundation annual research expenditure rankings in the areas of chemistry, physical sciences, agricultural sciences and social sciences. Out of 537 research universities without a medical school, NDSU ranks 41st in research expenditures for FY2007. www.ndsu.edu/research
About CSSP
The Council of Scientific Society Presidents (CSSP) is an organization of presidents, presidents-elect, and recent past presidents of about sixty scientific federations and societies whose combined membership numbers well over 1.4 million scientists and science educators. The CSSP provides an opportunity for scientists and science/math educators to convene in a multidisciplinary forum for engaging in lively dialogue with invited speakers from government, academe and industry. Since 1973, CSSP has served as a strong national voice in fostering wise science policy, in support of science and science education, as the premier national science leadership development center, and as a forum for open, substantive exchanges on emerging scientific issues. http://cssp.us
For more information:
Scientists Model the Scaling Laws of Water Uptake by Plant Roots
http://www.csrees.usda.gov/newsroom/impact/2008/nri/10161_plant_roots.html
Dr. Mario Biondini, North Dakota State University
http://www.ndsu.nodak.edu/instruct/biondini/vita/mebvita.htm
Allometric scaling laws for water uptake by plant roots. Journal of Theoretical Biology 251:35-59.
A three dimensional spatial model for plant competition in a heterogeneous soil environment.

Ecological Modelling 142/3:191-227.

Carol Renner | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>