Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NDSU Prof Develops 3-D Model for How Plants Drink

14.11.2008
Accurately predicting whether plant root systems will sip, slurp or gulp water as if through a straw, a hose or a pipe, could greatly assist in implementing modern agro-ecosystem practices.

Mario Biondini, professor in the School of Natural Resource Sciences at North Dakota State University (NDSU), Fargo, has developed a three-dimensional model that helps determine how much water plant root systems will absorb. Biondini has been invited to discuss his research at the semi-annual meeting of The Council of Scientific Society Presidents Dec. 6 to 9, 2008, in Washington, D.C.

In a global economy where scarcity of water can impact agricultural yields of crops to feed the world, Professor Biondini’s research offers additional insights on more accurately predicting how much water plants absorb through their root systems. Biondini’s research improves upon what is known as the West, Brown, and Enquist (WBE) model for scaling laws in biological networks. The WBE model predicts how closed systems will uptake water. Although it is useful to evaluate closed systems, the WBE model does not offer an optimum way to predict water uptake in open systems such as plant root systems.

In his research, Biondini used data from 1,759 plants in 77 herbaceous plant species to test his model. Such modeling includes taking into account the resistance to water flow inside the root system (longitudinal flow), as well as the water coming into the root system (transversal flow). As the model was developed, Biondini included soil type and drainage patterns. The Biondini model uses a simple root system while still illustrating the flow dynamics of a complete root network.

An accurate model such as the one developed by Biondini provides an important tool for consideration in sustainable agricultural practices. The 3-D model simulates interactions among plants and soil systems. The model 3DMIPS is used to investigate links between biological diversity, nutrient cycling, nutrient retention, water quality, productivity, stability and sustainability of natural and managed ecosystems.

Biondini used NDSU’s Center for High Performance Computing (CHPC) in the development of his model. “CHPC resources have been invaluable since implementations of the model required large memory and disc storage as well as high execution speeds for both its three-dimensional nature and the fine spatial grain needed to model water and nutrient flows at the root surface level,” Biondini said.

Funding for Biondini’s research was provided by the United States Department of Agriculture’s Cooperative State Research, Education, and Extension Service (CSREES) National Research Initiative (NRI).

Biondini received his bachelor’s degree in agronomy from the Universidad Nacional del Sur, Bahia Blanca, Argentina; his master’s degree in range ecology-systems analysis from Texas Tech University, Lubbock, Texas; and his Ph.D. in range ecosystems science-statistics from Colorado State University, Fort Collins, Colo. He joined NDSU in 1986. Biondini has been recipient of the NDSU College of Agriculture Award for Excellence in Research – Early Career, the NDSU College of Agriculture, Food Systems and Natural Resources Eugene R. Dahl Excellence in Research Award – Senior Career, and the NDSU Fred Waldron Award for Outstanding Research.

About NDSU
With a reputation for excellence in teaching and multidisciplinary research, North Dakota State University, Fargo, links academics to real world opportunities. As a metropolitan land grant institution with more than 13,000 students, NDSU is listed in the top 100 of several National Science Foundation annual research expenditure rankings in the areas of chemistry, physical sciences, agricultural sciences and social sciences. Out of 537 research universities without a medical school, NDSU ranks 41st in research expenditures for FY2007. www.ndsu.edu/research
About CSSP
The Council of Scientific Society Presidents (CSSP) is an organization of presidents, presidents-elect, and recent past presidents of about sixty scientific federations and societies whose combined membership numbers well over 1.4 million scientists and science educators. The CSSP provides an opportunity for scientists and science/math educators to convene in a multidisciplinary forum for engaging in lively dialogue with invited speakers from government, academe and industry. Since 1973, CSSP has served as a strong national voice in fostering wise science policy, in support of science and science education, as the premier national science leadership development center, and as a forum for open, substantive exchanges on emerging scientific issues. http://cssp.us
For more information:
Scientists Model the Scaling Laws of Water Uptake by Plant Roots
http://www.csrees.usda.gov/newsroom/impact/2008/nri/10161_plant_roots.html
Dr. Mario Biondini, North Dakota State University
http://www.ndsu.nodak.edu/instruct/biondini/vita/mebvita.htm
Allometric scaling laws for water uptake by plant roots. Journal of Theoretical Biology 251:35-59.
A three dimensional spatial model for plant competition in a heterogeneous soil environment.

Ecological Modelling 142/3:191-227.

Carol Renner | Newswise Science News
Further information:
http://www.ndsu.edu

More articles from Agricultural and Forestry Science:

nachricht New insight into why Pierce's disease is so deadly to grapevines
11.06.2018 | University of California - Davis

nachricht Where are Europe’s last primary forests?
29.05.2018 | Humboldt-Universität zu Berlin

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>