Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanomachines make sugar juice flow

20.10.2010
Plants play an important role as producers of sugar and carbohydrates. Scientists from the University of Würzburg are conducting research in this area – with the long-term goal of influencing sugar levels in agricultural crop plants.

The sugar that is consumed by people is obtained predominantly from sugar cane and sugar beets. Plants produce the sweet, energy-rich substance during photosynthesis in their leaves. From there they transport it in the form of sucrose through the phloem network to those tissues that do not perform photosynthesis and which are therefore reliant on sugar imports, such as roots and fruits.

A key contributor to sugar distribution in the plant is a central molecule known as the sucrose transporter. This is located in the phloem cell membranes and delivers a truly outstanding performance. Dietmar Geiger from the University of Würzburg has measured this and is now describing the transporter as a “quite seamlessly operating nanomachine”.

Strong transport performance in the face of high resistance

A single transporter pumps up to 500 sucrose molecules a second through the cell membrane into the phloem network. To do this it overcomes great resistance: even if the network is already packed with sugar, it is still able to force more in – until a concentration is reached that borders on the solubility limit for sucrose. This performance is comparable to the effort involved in pumping up a tire: the more air the tire contains, the harder it is to pump.

The high accumulation of sugar in the phloem network increases the pressure there. At the same time, however, pressure is also released from the vascular system: in the tissues that are supplied with sugar. Consequently, the difference in pressure makes the sugar-containing juice flow in the plant to wherever sugar is consumed. “In the same way as the heart is responsible for circulating blood in people, the sucrose transporters in plants make sure that the sugar juice flows,” says Geiger.

Findings published in the magazine PLoS one

The function of sucrose transporters in maize plants is described in detail by the Würzburg plant physiologist and biophysicist Geiger in the journal PLoS one. His Würzburg colleagues Rainer Hedrich and Hermann Koepsell were also involved with the publication, as were scientists from Frankfurt am Main and Genoa.

The results were achieved with the help of eggs from the South African clawed frog, which the researchers are using as living test tubes. They introduce the gene for the sucrose transporter into the eggs, where active transporters are produced from it and integrated into the membrane. “This makes the transport protein accessible for biophysical measurements,” explains Geiger. Using this technique, the scientists have managed, among other things, to demonstrate for the first time that a transport protein can be responsible for both loading and unloading the phloem network under physiological conditions.

Further research into the inner molecular workings of the transporter

The German Research Foundation (DFG) is funding Dietmar Geiger’s work so that he can continue to extend knowledge of the inner molecular workings of these sugar-transporting machines. Geiger is currently focusing on the structural and functional requirements that allow the transporter to carry sucrose molecules through membranes accurately and with maximum efficiency.

Geiger and his colleagues are aiming to dismantle the transporter’s mechanism into its constituent parts using new biophysical methods. One of their plans is to attach a fluorescent molecule to a transporter site that moves during the transport operation. By observing the fluorescence they will then be able to look on “live” while the transporter is at work.

Long-term goal: to optimize agricultural crop plants

“The long-term goal of our work is to optimize the distribution and storage of important sugar compounds in plants used agriculturally,” says Dietmar Geiger. He adds that fungal attacks on useful plants, for example, lead to considerable crop failures year after year. Fungi also possess sucrose transporters that they use to absorb sugar – and these work even more efficiently than those of plants. As a result, they undermine the supply of energy-rich sugar compounds to the plant. “Equipping plants with similarly efficient sucrose transporters could decide the battle for sugar resources in favor of the plant and reduce crop failures,” explains Geiger.

Having researched the principle behind the function of sucrose transporters, the scientists will examine whether the precise adjustment of the sugar content in the plant’s phloem network depends solely on import and export. Or is the sugar level in plants regulated by sensors, as with the insulin system in people? Intervention in such a sugar sensor system would make it possible to control and increase the biomass production of plants used agriculturally.

“Sucrose- and H+-Dependent Charge Movements Associated with the Gating of Sucrose Transporter ZmSUT1”, Armando Carpaneto, Hermann Koepsell, Ernst Bamberg, Rainer Hedrich, Dietmar Geiger, PloS one, September 2010, Vol. 5, Issue 9: e12605. DOI: 10.1371/journal.pone.0012605

The researcher

Dr. Dietmar Geiger received his doctorate at the University of Würzburg’s Department of Molecular Plant Physiology and Biophysics. He then became a post-doctoral student in the laboratory of Professor Ernst Bamberg at the Max Planck Institute of Biophysics in Frankfurt. As an assistant to Professor Rainer Hedrich, he applies molecular and biophysical methods in order to understand the structures of ion channels and metabolite carriers that account for the special function of membrane proteins.

Contact

Dr. Dietmar Geiger, Department of Molecular Plant Physiology and Biophysics at the University of Würzburg, T +49 (0)931 31-86105, geiger@botanik.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>