Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Maths study of photosynthesis clears the path to developing new super-crops

How some plant species evolved super-efficient photosynthesis had been a mystery. Now, scientists have identified what steps led to that change.

Around three per cent of all plants use an advanced form of photosynthesis, which allows them to capture more carbon dioxide, use less water, and grow more rapidly. Overall this makes them over 50% more efficient than plants that use the less efficient form.

A new study has traced back the evolutionary paths of all the plants that use advanced photosynthesis, including maize, sugar cane and millet, to find out how they evolved the same ability independently, despite not being directly related to one another.

Using a mathematical analysis, the authors uncovered a number of tiny changes in the plants' physiology that, when combined, allow them to grow more quickly; using a third as much water as other plants; and capture around thirteen times more carbon dioxide from the atmosphere.

Together, these individual evolutionary advances make up a 'recipe' that could be used to improve key agricultural crops that only use the less efficient form. The study's authors say this knowledge could be used to breed super-crops such as faster growing, drought-resistant rice.

The research was led by mathematician Dr Iain Johnston from Imperial College London and plant biologist Dr Ben Williams from the University of Cambridge, and is published in the journal eLife. They came together to test whether a new mathematical model of evolution could be used to unpick the evolutionary pathways that led to the advanced photosynthesis.

"My main interest is in using tools from maths to make some concrete progress in a problem of real biological and social value," said Dr Johnston. "Encouragingly for the efforts to design super-efficient crops, we found that several different pathways lead to the more efficient photosynthesis – so there are plenty of different recipes biologists could follow to achieve this."

Dr Julian Hibberd from the University of Cambridge, the final author on the paper, added: "This is not only an interesting mathematical result, it should help biological scientists to develop crops with significantly improved yields to feed the world. Like the proverbial roads that all lead to Rome, Ben and Iain have shown that there are many routes taken by plants in the evolutionary process."

The next step for the biologists is to recreate the natural evolution of the more advanced photosynthesis by mirroring the genetic and physiological changes in simple laboratory plants, and eventually in rice.

Journal Reference

"Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis" was published by Ben P Williams, Iain G Johnston, Sarah Covshoff and Julian M Hibberd in eLife DOI:

Simon Levey | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>