Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maths study of photosynthesis clears the path to developing new super-crops

18.10.2013
How some plant species evolved super-efficient photosynthesis had been a mystery. Now, scientists have identified what steps led to that change.

Around three per cent of all plants use an advanced form of photosynthesis, which allows them to capture more carbon dioxide, use less water, and grow more rapidly. Overall this makes them over 50% more efficient than plants that use the less efficient form.

A new study has traced back the evolutionary paths of all the plants that use advanced photosynthesis, including maize, sugar cane and millet, to find out how they evolved the same ability independently, despite not being directly related to one another.

Using a mathematical analysis, the authors uncovered a number of tiny changes in the plants' physiology that, when combined, allow them to grow more quickly; using a third as much water as other plants; and capture around thirteen times more carbon dioxide from the atmosphere.

Together, these individual evolutionary advances make up a 'recipe' that could be used to improve key agricultural crops that only use the less efficient form. The study's authors say this knowledge could be used to breed super-crops such as faster growing, drought-resistant rice.

The research was led by mathematician Dr Iain Johnston from Imperial College London and plant biologist Dr Ben Williams from the University of Cambridge, and is published in the journal eLife. They came together to test whether a new mathematical model of evolution could be used to unpick the evolutionary pathways that led to the advanced photosynthesis.

"My main interest is in using tools from maths to make some concrete progress in a problem of real biological and social value," said Dr Johnston. "Encouragingly for the efforts to design super-efficient crops, we found that several different pathways lead to the more efficient photosynthesis – so there are plenty of different recipes biologists could follow to achieve this."

Dr Julian Hibberd from the University of Cambridge, the final author on the paper, added: "This is not only an interesting mathematical result, it should help biological scientists to develop crops with significantly improved yields to feed the world. Like the proverbial roads that all lead to Rome, Ben and Iain have shown that there are many routes taken by plants in the evolutionary process."

The next step for the biologists is to recreate the natural evolution of the more advanced photosynthesis by mirroring the genetic and physiological changes in simple laboratory plants, and eventually in rice.

Journal Reference

"Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis" was published by Ben P Williams, Iain G Johnston, Sarah Covshoff and Julian M Hibberd in eLife DOI: http://dx.doi.org/10.7554/eLife.00961

Simon Levey | EurekAlert!
Further information:
http://www.imperial.ac.uk

More articles from Agricultural and Forestry Science:

nachricht New gene for atrazine resistance identified in waterhemp
24.02.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Cells adapt ultra-rapidly to zero gravity

28.02.2017 | Health and Medicine

An Atom Trap for Water Dating

28.02.2017 | Earth Sciences

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>