Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loblolly pine's immense genome conquered

20.03.2014

The massive genome sequence of the loblolly pine — the most commercially important tree species in the United States and the source of most American paper products — has been completed by a nationwide research team, led by a UC Davis scientist.

The draft genome — approximately seven times bigger than the human genome — is the largest genome sequenced to date and the most complete conifer genome sequence ever published. The sequencing was accomplished by using, for the first time, a faster and more efficient analytical process. The achievement is described in two papers in the March 2014 issue of Genetics and in one paper in the open access journal Genome Biology.


The loblolly pine -- whose genome is the largest ever sequenced -- is the most commercially important tree species in the United States and the source of most American paper products.

Credit: Ron Billings/Texas A&M Forest Service

The genome sequence will help scientists breed improved varieties of the loblolly pine, which also is being developed as a feedstock for biofuel. The newly sequenced genome also provides a better understanding of the evolution and diversity of plants.

"It's a huge genome. But the challenge isn't just collecting all the sequence data. The problem is assembling that sequence into order," said David Neale, a professor of plant sciences at the University of California, Davis, who led the loblolly pine genome project and is an author on the Genetics and Genome Biology articles.

To tackle the enormous size of the loblolly pine's genome, which until recently has been an obstacle to sequencing efforts, the research team used a new method that can speed up genome assembly by compressing the raw sequence data 100-fold.

Modern genome sequencing methods make it relatively easy to read the individual "letters" in DNA, but only in short fragments. In the case of the loblolly, 16 billion separate fragments had to be fit back together — a computational puzzle called genome assembly.

"We were able to assemble the human genome, but that was close to the limit of our ability; seven times bigger was just too much," said Steven Salzberg, professor of medicine and biostatistics at Johns Hopkins University, one of the directors of the loblolly genome assembly team and an author on the papers.

The key to the solution was using a new method, developed by researchers at the University of Maryland, which pre-processes the sequence data, eliminates redundancies and yields 100 times less sequence data. This approach, tested for the first time in this study, allowed the team to assemble a much more complete genome sequence than the draft assemblies of two other conifer species reported last year.

"The size of the pieces of consecutive sequence that we assembled are orders of magnitude larger than what's been previously published," said Neale, noting that the loblolly now provides a high-quality "reference" genome that considerably speeds along future conifer genome projects.

The loblolly genome research was conducted in an open-access manner, benefiting the research community even before the genome sequencing effort was completed and published. Data have been freely available throughout the project, with three public releases starting in June 2012.

The new sequencing confirmed that 82 percent of the loblolly genome is made up of invasive DNA elements and other DNA fragments that copied themselves around the genome. The genome sequencing also revealed the location of genes that may be involved in fighting off pathogens, which will help scientists understand more about disease resistance in pines.

For example, researchers from the Forest Service Southern Institute for Forest Genetics identified an important candidate gene for resistance to fusiform rust, the most damaging disease of southern pines. A molecular understanding of genetic resistance is a valuable tool for forest managers as they select trees that will develop into healthy stands.

"The fusiform rust mapping that our scientists did as part of this project provides significant information for land managers, since more than 500 million loblolly pine seedlings with these resistance genes are planted every year," said Dana Nelson, the institute's project leader. "The group selected loblolly pine for sequencing because of the relatively long history of genetic research from the institute and others on the loblolly's complex traits such as disease resistance," she said.

Sonny Ramaswamy, director of USDA's National Institute of Food and Agriculture, which funded the research, noted that the loblolly pine plays an important role in American forestry.

"Now that we've unlocked its genetic secrets, loblolly pine will take on even greater importance as we look for new sources of biomass to drive our nation's bio-economy, and ways to increase carbon sequestration and mitigate climate change," Ramaswamy said.

The loblolly genome project was led by a UC Davis team, and the assembly stages were led by Johns Hopkins University and the University of Maryland. Other collaborating institutions include Indiana University, Bloomington; Texas A&M University; Children's Hospital Oakland Research Institute; and Washington State University.

###

The work was supported in part by the US Department of Agriculture's National Institute of Food and Agriculture through its flagship competitive grants program, the Agriculture and Food Research Initiative.

About UC Davis:

For more than 100 years, UC Davis has been one place where people are bettering humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the state capital, UC Davis has more than 33,000 students, over 2,500 faculty and more than 21,000 staff, an annual research budget of over $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

-- David Neale, UC Davis Plant Sciences, dbneale@ucdavis.edu

-- Jennifer Martin, USDA National Institute of Food and Agriculture, (202) 720-8188, jmartin@nifa.usda.gov

-- Cristy Gelling, Genetics Society of America, (412) 327-6343, cgelling@thegsajournals.org

-- Anna Perman, Genome Biology/BioMed Central, +44 (0)20 3192 2, Anna.Perman@biomedcentral.com

-- Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Pat Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Biology DNA Food Genetics Genome Loblolly Medicine fragments resistance sequence

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>