Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Loblolly pine's immense genome conquered

20.03.2014

The massive genome sequence of the loblolly pine — the most commercially important tree species in the United States and the source of most American paper products — has been completed by a nationwide research team, led by a UC Davis scientist.

The draft genome — approximately seven times bigger than the human genome — is the largest genome sequenced to date and the most complete conifer genome sequence ever published. The sequencing was accomplished by using, for the first time, a faster and more efficient analytical process. The achievement is described in two papers in the March 2014 issue of Genetics and in one paper in the open access journal Genome Biology.


The loblolly pine -- whose genome is the largest ever sequenced -- is the most commercially important tree species in the United States and the source of most American paper products.

Credit: Ron Billings/Texas A&M Forest Service

The genome sequence will help scientists breed improved varieties of the loblolly pine, which also is being developed as a feedstock for biofuel. The newly sequenced genome also provides a better understanding of the evolution and diversity of plants.

"It's a huge genome. But the challenge isn't just collecting all the sequence data. The problem is assembling that sequence into order," said David Neale, a professor of plant sciences at the University of California, Davis, who led the loblolly pine genome project and is an author on the Genetics and Genome Biology articles.

To tackle the enormous size of the loblolly pine's genome, which until recently has been an obstacle to sequencing efforts, the research team used a new method that can speed up genome assembly by compressing the raw sequence data 100-fold.

Modern genome sequencing methods make it relatively easy to read the individual "letters" in DNA, but only in short fragments. In the case of the loblolly, 16 billion separate fragments had to be fit back together — a computational puzzle called genome assembly.

"We were able to assemble the human genome, but that was close to the limit of our ability; seven times bigger was just too much," said Steven Salzberg, professor of medicine and biostatistics at Johns Hopkins University, one of the directors of the loblolly genome assembly team and an author on the papers.

The key to the solution was using a new method, developed by researchers at the University of Maryland, which pre-processes the sequence data, eliminates redundancies and yields 100 times less sequence data. This approach, tested for the first time in this study, allowed the team to assemble a much more complete genome sequence than the draft assemblies of two other conifer species reported last year.

"The size of the pieces of consecutive sequence that we assembled are orders of magnitude larger than what's been previously published," said Neale, noting that the loblolly now provides a high-quality "reference" genome that considerably speeds along future conifer genome projects.

The loblolly genome research was conducted in an open-access manner, benefiting the research community even before the genome sequencing effort was completed and published. Data have been freely available throughout the project, with three public releases starting in June 2012.

The new sequencing confirmed that 82 percent of the loblolly genome is made up of invasive DNA elements and other DNA fragments that copied themselves around the genome. The genome sequencing also revealed the location of genes that may be involved in fighting off pathogens, which will help scientists understand more about disease resistance in pines.

For example, researchers from the Forest Service Southern Institute for Forest Genetics identified an important candidate gene for resistance to fusiform rust, the most damaging disease of southern pines. A molecular understanding of genetic resistance is a valuable tool for forest managers as they select trees that will develop into healthy stands.

"The fusiform rust mapping that our scientists did as part of this project provides significant information for land managers, since more than 500 million loblolly pine seedlings with these resistance genes are planted every year," said Dana Nelson, the institute's project leader. "The group selected loblolly pine for sequencing because of the relatively long history of genetic research from the institute and others on the loblolly's complex traits such as disease resistance," she said.

Sonny Ramaswamy, director of USDA's National Institute of Food and Agriculture, which funded the research, noted that the loblolly pine plays an important role in American forestry.

"Now that we've unlocked its genetic secrets, loblolly pine will take on even greater importance as we look for new sources of biomass to drive our nation's bio-economy, and ways to increase carbon sequestration and mitigate climate change," Ramaswamy said.

The loblolly genome project was led by a UC Davis team, and the assembly stages were led by Johns Hopkins University and the University of Maryland. Other collaborating institutions include Indiana University, Bloomington; Texas A&M University; Children's Hospital Oakland Research Institute; and Washington State University.

###

The work was supported in part by the US Department of Agriculture's National Institute of Food and Agriculture through its flagship competitive grants program, the Agriculture and Food Research Initiative.

About UC Davis:

For more than 100 years, UC Davis has been one place where people are bettering humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the state capital, UC Davis has more than 33,000 students, over 2,500 faculty and more than 21,000 staff, an annual research budget of over $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contact(s):

-- David Neale, UC Davis Plant Sciences, dbneale@ucdavis.edu

-- Jennifer Martin, USDA National Institute of Food and Agriculture, (202) 720-8188, jmartin@nifa.usda.gov

-- Cristy Gelling, Genetics Society of America, (412) 327-6343, cgelling@thegsajournals.org

-- Anna Perman, Genome Biology/BioMed Central, +44 (0)20 3192 2, Anna.Perman@biomedcentral.com

-- Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Pat Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

Further reports about: Biology DNA Food Genetics Genome Loblolly Medicine fragments resistance sequence

More articles from Agricultural and Forestry Science:

nachricht Improving artichoke root development, transplant quality
21.07.2016 | American Society for Horticultural Science

nachricht Genome of 6,000-year-old barley grains sequenced for first time
19.07.2016 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>