Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Grazinglands Influence Greenhouse Gas

19.05.2010
Study examines grasslands and grazing management impacts on global warming

Grazinglands represent one of the largest land resources in the world, yet their role as net sinks or sources of greenhouse gases is essentially unknown. Previous research has emphasized the role of grazing management on the sequestration of atmospheric carbon dioxide as soil organic carbon. However, there is a lack of information regarding how grazing management impacts the flux of two potent GHGs, nitrous oxide and methane.

A team of scientists lead by Mark Liebig at the USDA-ARS Northern Great Plains Research Laboratory estimated net global warming potential for three grazing management systems located in central North Dakota. The grazing management systems represented two native vegetation pastures under medium and high grazing pasture management, and a heavily grazed seeded crested wheatgrass pasture receiving supplemental nitrogen. The results indicate that grazinglands are strong sinks of soil organic carbon and minor sinks of methane, but small to moderate sources of nitrous oxide. Results from the study were published in the May-June 2010 issue of Journal of Environmental Quality, published by the America Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Net global warming potential for the native grasslands was negative, implying an overall removal of greenhouse gases from the atmosphere. This finding underscores the value of grazed, mixed-grass prairie as a viable agroecosystem to serve as a net greenhouse gas sink in the northern Great Plains. Conversely, the seeded forage nitrous oxide emissions were nearly three times that of the native grasses, which contributed a net positive net global warming potential, implying net greenhouse gas emission to the atmosphere.

The research team was able to estimate global warming potential for each management practice by measuring changes in soil organic carbon, and nitrous oxide and methane flux. This data was combined with estimates for methane emissions from cattle and carbon dioxide emissions associated with applying nitrogen fertilizer.

“It’s important to keep in mind the greenhouse gas balance we measured for the grazing treatments falls short of encompassing the full life-cycle of a steer,” said Mark Liebig. “While our results suggest grazed native vegetation in the northern Great Plains is a net GHG sink, we need to acknowledge there is additional greenhouse gas emissions associated with cattle production outside of what we measured or estimated.”

The study was conducted as part of a USDA-ARS cross-location research effort called GRACEnet (Greenhouse Gas Reduction through Agricultural Carbon Enhancement Network), which seeks to provide information on global warming potential of current agricultural practices, and to develop new management practices to reduce net greenhouse gas emissions from soil.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at https://www.agronomy.org/files/publications/jeq/abstracts/39-3/q09-0272-abstract.pdf.

The Journal of Environmental Quality, http://jeq.scijournals.org is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:
http://www.sciencesocieties.org

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>