Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How Grazinglands Influence Greenhouse Gas

Study examines grasslands and grazing management impacts on global warming

Grazinglands represent one of the largest land resources in the world, yet their role as net sinks or sources of greenhouse gases is essentially unknown. Previous research has emphasized the role of grazing management on the sequestration of atmospheric carbon dioxide as soil organic carbon. However, there is a lack of information regarding how grazing management impacts the flux of two potent GHGs, nitrous oxide and methane.

A team of scientists lead by Mark Liebig at the USDA-ARS Northern Great Plains Research Laboratory estimated net global warming potential for three grazing management systems located in central North Dakota. The grazing management systems represented two native vegetation pastures under medium and high grazing pasture management, and a heavily grazed seeded crested wheatgrass pasture receiving supplemental nitrogen. The results indicate that grazinglands are strong sinks of soil organic carbon and minor sinks of methane, but small to moderate sources of nitrous oxide. Results from the study were published in the May-June 2010 issue of Journal of Environmental Quality, published by the America Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Net global warming potential for the native grasslands was negative, implying an overall removal of greenhouse gases from the atmosphere. This finding underscores the value of grazed, mixed-grass prairie as a viable agroecosystem to serve as a net greenhouse gas sink in the northern Great Plains. Conversely, the seeded forage nitrous oxide emissions were nearly three times that of the native grasses, which contributed a net positive net global warming potential, implying net greenhouse gas emission to the atmosphere.

The research team was able to estimate global warming potential for each management practice by measuring changes in soil organic carbon, and nitrous oxide and methane flux. This data was combined with estimates for methane emissions from cattle and carbon dioxide emissions associated with applying nitrogen fertilizer.

“It’s important to keep in mind the greenhouse gas balance we measured for the grazing treatments falls short of encompassing the full life-cycle of a steer,” said Mark Liebig. “While our results suggest grazed native vegetation in the northern Great Plains is a net GHG sink, we need to acknowledge there is additional greenhouse gas emissions associated with cattle production outside of what we measured or estimated.”

The study was conducted as part of a USDA-ARS cross-location research effort called GRACEnet (Greenhouse Gas Reduction through Agricultural Carbon Enhancement Network), which seeks to provide information on global warming potential of current agricultural practices, and to develop new management practices to reduce net greenhouse gas emissions from soil.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at

The Journal of Environmental Quality, is a peer-reviewed, international journal of environmental quality in natural and agricultural ecosystems published six times a year by the American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and the Soil Science Society of America (SSSA). The Journal of Environmental Quality covers various aspects of anthropogenic impacts on the environment, including terrestrial, atmospheric, and aquatic systems.

The American Society of Agronomy (ASA), is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>