Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS Helps Locate Soil Erosion Pathways

18.08.2009
Grassed waterways are placed in agricultural fields where runoff water tends to concentrate because they can substantially reduce soil erosion.

Mapping techniques that help identify where erosion channels will likely form could help farmers and conservation professionals do a better job of designing and locating grassed waterways in agricultural fields.

Tom Mueller, associate professor in the University of Kentucky (UK), College of Agriculture, guided Adam Pike, UK graduate student, on a project that examined whether reliable prediction models could be created to identify eroded waterways from digital terrain information such as landscape curvature and estimates of water flow from upslope areas.

"The terrain attributes were calculated from elevation data obtained with survey-grade GPS measurements collected on a farm in the Outer Bluegrass Region of Kentucky," Mueller explains.

Results from the study are published in the September-October issue of Agronomy Journal. This work supported by a special grant from the U.S. Department of Agriculture.

The authors developed equations that accurately identified the potential locations of erosion-prone areas. They found that simple regression methods could be used to fit these equations as well as more complex non-linear neural-network procedures. The equations were used to map areas in fields where erosion was predicted. These areas corresponded very well with actual field observations of erosion. This work was confirmed with a leave-one-field-out validation procedure.

Research showed these maps could help conservation planners and farmers identify where erosion from concentrated flow is likely to occur, but not necessarily the exact shapes of these features. Field site-assessments would still likely be required for verification and to accurately delineate the boundaries of erosion-prone areas.

Mueller stated, "while this study is promising, more work is needed to determine whether these techniques can also be used with USGS digital elevation grids and from elevation data obtained with light detecting and ranging (LIDAR) data. Further, we need to evaluate whether models can be developed to predict across larger geographic areas."

Mueller is conducting follow-up research to evaluate quality of erosion predictions created with 10-m USGS data sets and evaluating the performance of these models on fields in western Kentucky. He hopes to present the results of some of this work at the 2009 Annual American Society of Agronomy Meetings.

The full article is available for no charge for 30 days following the date of this summary. View the abstract at http://agron.scijournals.org/cgi/content/abstract/101/5/1068.

A peer-reviewed international journal of agriculture and natural resource sciences, Agronomy Journal is published six times a year by the American Society of Agronomy, with articles relating to original research in soil science, crop science, agroclimatology and agronomic modeling, production agriculture, and software. For more information visit: http://agron.scijournals.org.

The American Society of Agronomy (ASA) www.agronomy.org, is a scientific society helping its 8,000+ members advance the disciplines and practices of agronomy by supporting professional growth and science policy initiatives, and by providing quality, research-based publications and a variety of member services.

Sara Uttech | Newswise Science News
Further information:
http://www.agronomy.org
http://agron.scijournals.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>