Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do you feed 9 billion people?

10.06.2013
An international team of scientists has developed crop models to better forecast food production to feed a growing population – projected to reach 9 billion by mid-century – in the face of climate change.

In a paper appearing in Nature Climate Change, members of the Agricultural Model Intercomparison and Improvement Project unveiled an all-encompassing modeling system that integrates multiple crop simulations with improved climate change models. AgMIP's effort has produced new knowledge that better predicts global wheat yields while reducing political and socio-economic influences that can skew data and planning efforts, said Bruno Basso, Michigan State University ecosystem scientist and AgMIP member.

"Quantifying uncertainties is an important step to build confidence in future yield forecasts produced by crop models," said Basso, with MSU's geological sciences department and Kellogg Biological Station. "By using an ensemble of crop and climate models, we can understand how increased greenhouse gases in the atmosphere, along with temperature increases and precipitation changes, will affect wheat yield globally."

The improved crop models can help guide the world's developed and developing countries as they adapt to changing climate and create policies to improve food security and feed more people, he added.

Basso, part of MSU's Global Water Initiative, and his team of researchers developed the System Approach for Land-Use Sustainability model. SALUS is a new generation crop tool to forecast crop, soil, water, nutrient conditions in current and future climates. It also can evaluate crop rotations, planting dates, irrigation and fertilizer use and project crop yields and their impact on the land.

SALUS was initially designed by Joe Ritchie, MSU emeritus distinguished professor. Basso continued Ritchie's work and added new features to better predict the impact of agronomic management on crop yield over space and time.

"We can change the scenarios, run them simultaneously and compare their outcomes," Basso said. "It offers us a great framework to easily compare different land-management approaches and select the most efficient strategies to increase crop yield and reduce environmental impact such as nitrate leaching and greenhouse gas emission."

For the study, the team looked at simulated yield from 27 different wheat crop models. Through SALUS, Basso forecasted the impact of changes in temperature, precipitation and CO2 emissions on wheat yield from contrasting environment across the planet.

SALUS has been employed in several other projects monitoring grain yield and water use in water-sensitive areas, such as the Ogallala aquifer (spanning from South Dakota to Texas), Siberia, India and Africa.

"I have the ambitious goal to enhance scientific knowledge for living in a better world, and hopefully with less poverty and enough food for the planet," Basso said.

The research was funded in part by the U.S. Department of Agriculture and the United Kingdom's Department for International Development.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>