Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New EU-project to enhance seed quality led by the University of Innsbruck

07.02.2013
Each year massive economic losses are suffered by farmers and the seed trade alike due to poor seed quality.
These losses are partly due to inadequate storage conditions, and are predicted to be exacerbated by climate change. A team of European scientists has committed themselves to unravel how environmental stresses to the mother plant will impact upon seed quality, and if seed storage conditions prior to the next sowing can be improved to enhance seed quality. The €3 million project will be coordinated by the University of Innsbruck, Austria.

Every seed has a life of its own. Information received during its development on the mother plant determines its quality: how long a seed can be stored, if it will be dormant (see below), if it will germinate readily after storage and if it will grow into a healthy, vigorous new plant. Seed quality is further influenced by storage conditions, and is essentially important to agriculture and industry. It has been estimated that yield loss from major cereals due to rising temperatures between 1981 and 2002 was $5 billion per year. Importantly, seed wastage resulting from sub-optimal seed performance undermines food security and livelihoods. High-quality seed and a capability to store them adequately are also pivotal to safeguard the seeds of wild plant species required for the conservation of plant biodiversity.

“Seed quality is determined by highly complex interactions between biochemical, biophysical and molecular processes within the seed, which are only very poorly understood” explains Ilse Kranner, Professor of Plant Physiology at the Austrian University of Innsbruck, who is the coordinator of the EU-project EcoSeed. In this project, three crop species, barley, sunflower and cabbage will be studied together with the model plant Arabidopsis, to see how drought and elevated temperatures suffered by the mother plant, impact upon seed quality. As a next step, the scientists want to find out how changes in temperature, humidity and oxygen concentrations during storage further affect seed viability, storability, and seedling vigour.

The knowledge gained from the detailed study of the above four plant species will then be transferred to wild plant species to the benefit of conservation projects. Eleven renowned European teams participate in the EcoSeed project. Among them are the Seed Conservation Department of the Royal Botanic Gardens, Kew, maintaining the largest ex situ genebank for wild plant species globally, and the Federal ex situ Genebank of Germany, the IPK Gatersleben, which is the largest crop genebank in the EU. “EcoSeed combines aspects of food security and conservation, and we are lucky to have top-class scientists in the consortium” says Ilse Kranner.

Signalling hubs that determine seed fate

Seed dormancy is an example for the highly complex processes that occur within seeds. Dormancy is the inability of a seed to germinate in spite of favourable conditions before certain environmental cues have been received. For example, in temperate European climates many seeds shed from the mother plant in the autumn will not germinate, even though the environmental conditions such as temperature and soil moisture are ideal, explains the scientist. Before it will germinate the seed needs to undergo an extended period of low temperature during the winter – it then “knows” that spring has arrived. This important seed trait – as well as other traits that define seed quality – is controlled by “signalling hubs” throughout the seed life cycle, from seed development on the mother plant, through processing, storage to germination. These complex signalling hubs comprise plant hormones and signalling compounds such as “reactive oxygen species”, which are of specific importance to the research area of the Innsbruck team and others in the consortium. The teams will apply the most recent state-of-the-art “omics” (transcriptomics, proteomics and metabolomics) and “post-omics” techniques to unravel factors that determine seed quality on different levels: they will study how genes within the seed are affected by stress, and how this influences the production of proteins and smaller compounds required for a healthy metabolism.

Facts and Figures

Funded by the 7th EU Framework Programme for Research and Innovation, the project „Impacts of Environmental Conditions on Seed Quality“ (acronym „EcoSeed“) was awarded a rounded sum of €3 million. EcoSeed is a four year project running from the start of 2013 to the end of 2016. The project initiation meeting was held at the University of Innsbruck on the 4th of February. Apart from the University of Innsbruck (Austria) the following 10 institutions participate in the project: Royal Botanic Gardens, Kew (United Kingdom), Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben (Germany), Université Pierre e Marie Curie (France), Max Planck Institute for Plant Breeding Research (Germany), Warwick University (United Kingdom), Institute National de la Recherche Agronomique (France), University of Leeds (United Kingdom), Universidad de Salamanca (Spain), Commissariat à l’énergie atomique et aux énergies alternatives (France) and Limagrain Europe (France). Within the 7th Framework a total of 10 projects are coordinated by Austrian research institutions.

Contact:

Ilse Kranner, PhD, MSc
Professor of Plant Biology
Institute of Botany
University of Innsbruck
Telephone: +43 512 507 51035
Ilse.Kranner@uibk.ac.at

Eva Fessler, MSc
Public Relations officer
University of Innsbruck
Telephone: +43 512 507 32020
Eva.Fessler@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>