Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New ‘Dual Resistant’ Tomatoes Fight Lethal Pests with One-Two Punch

In the battle against thrips, Cornell breeder Martha Mutschler-Chu has developed a new weapon: a tomato that packs a powerful one-two punch to deter the pests and counter the killer viruses they transmit.

The “dual resistant” insect and virus varieties may reduce or even eliminate the need for pesticides in several regions.

Thrips are tiny insects that pierce and suck fluids from hundreds of species of plants, including tomatoes, grapes, strawberries and soybeans. They also transmit such diseases as the tomato spotted wilt virus, causing millions of dollars in damage to U.S. agricultural crops each year.

Adapting a novel form of insect resistance discovered in a wild plant native to Peru, Mutschler-Chu, professor of plant breeding and genetics, first isolated the resistance. She found that it was mediated by droplets of sugar esters, called acylsugars, that are produced and exuded from hairs (trichomes) that cover the plants. The acylsugars don’t kill the insects, but deter them from feeding or laying eggs on the plants. The process does not require genetic modification and is completely safe.

After successfully transferring the resistance into new lines and breeding out undesirable traits, her team added a second layer of protection: one or both of two natural genes known to resist the so-called TOSPO viruses, which include tomato spotted wilt virus.

“If some thrips get through with the virus, the virus resistance genes are there to mop it up,” Mutschler-Chu said.

The Cornell thrips-resistant tomato lines, with and without the virus resistance genes, will be used by Mutschler-Chu and an interdisciplinary team of eight other scientists from seven other institutions nationwide as part of a new five-year, $3.75 million project to control thrips and TOSPO viruses in tomatoes. The project is funded by the U.S. Department of Agriculture’s Agriculture and Food Research Initiative and is led by entomologist Diane Ullman of the University of California, Davis, and plant pathologist John Sherwood of the University of Georgia.

Mutschler-Chu said the collaboration will allow her to test her varieties in different regions and use the feedback to further refine her lines and create new, improved ones. Whether it be altering sugar levels to suit different environments, or tweaking virus resistance, Mutschler-Chu wants to discover the best package for insect and virus control. Her discoveries will be shared with seed companies so they can transfer the traits into their varieties.

“It brings us closer and closer to something that can be used commercially to essentially eliminate the need for pesticides in many growing regions,” Mutschler-Chu said.

The project rests on a foundation that was built over 20 years, supported by college-level funding and federal HATCH grants. During that time, new tools of molecular biology were developed, from PCR-based markers and SNP markers to the sequencing of the tomato genome. Using the new methods, it took Mutschler-Chu 10 years to develop the first tomato line with enough acylsugar, then four years to create a better series of 30 lines.

The impact could be far-reaching, she said. Not only would it be a boon to the U.S agricultural economy, it could also have significant impact in the developing world, where tomatoes are one of the most popular vegetable cash crops, especially for small subsistence farmers.

“This is even more critical, because they don’t have the resources to buy pesticides, and there is often misuse of pesticides,” Mutschler-Chu said.

Cornell University has television and ISDN radio studios available for media interviews.

John Carberry | Newswise
Further information:

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>