Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ‘Dual Resistant’ Tomatoes Fight Lethal Pests with One-Two Punch

05.04.2013
In the battle against thrips, Cornell breeder Martha Mutschler-Chu has developed a new weapon: a tomato that packs a powerful one-two punch to deter the pests and counter the killer viruses they transmit.

The “dual resistant” insect and virus varieties may reduce or even eliminate the need for pesticides in several regions.

Thrips are tiny insects that pierce and suck fluids from hundreds of species of plants, including tomatoes, grapes, strawberries and soybeans. They also transmit such diseases as the tomato spotted wilt virus, causing millions of dollars in damage to U.S. agricultural crops each year.

Adapting a novel form of insect resistance discovered in a wild plant native to Peru, Mutschler-Chu, professor of plant breeding and genetics, first isolated the resistance. She found that it was mediated by droplets of sugar esters, called acylsugars, that are produced and exuded from hairs (trichomes) that cover the plants. The acylsugars don’t kill the insects, but deter them from feeding or laying eggs on the plants. The process does not require genetic modification and is completely safe.

After successfully transferring the resistance into new lines and breeding out undesirable traits, her team added a second layer of protection: one or both of two natural genes known to resist the so-called TOSPO viruses, which include tomato spotted wilt virus.

“If some thrips get through with the virus, the virus resistance genes are there to mop it up,” Mutschler-Chu said.

The Cornell thrips-resistant tomato lines, with and without the virus resistance genes, will be used by Mutschler-Chu and an interdisciplinary team of eight other scientists from seven other institutions nationwide as part of a new five-year, $3.75 million project to control thrips and TOSPO viruses in tomatoes. The project is funded by the U.S. Department of Agriculture’s Agriculture and Food Research Initiative and is led by entomologist Diane Ullman of the University of California, Davis, and plant pathologist John Sherwood of the University of Georgia.

Mutschler-Chu said the collaboration will allow her to test her varieties in different regions and use the feedback to further refine her lines and create new, improved ones. Whether it be altering sugar levels to suit different environments, or tweaking virus resistance, Mutschler-Chu wants to discover the best package for insect and virus control. Her discoveries will be shared with seed companies so they can transfer the traits into their varieties.

“It brings us closer and closer to something that can be used commercially to essentially eliminate the need for pesticides in many growing regions,” Mutschler-Chu said.

The project rests on a foundation that was built over 20 years, supported by college-level funding and federal HATCH grants. During that time, new tools of molecular biology were developed, from PCR-based markers and SNP markers to the sequencing of the tomato genome. Using the new methods, it took Mutschler-Chu 10 years to develop the first tomato line with enough acylsugar, then four years to create a better series of 30 lines.

The impact could be far-reaching, she said. Not only would it be a boon to the U.S agricultural economy, it could also have significant impact in the developing world, where tomatoes are one of the most popular vegetable cash crops, especially for small subsistence farmers.

“This is even more critical, because they don’t have the resources to buy pesticides, and there is often misuse of pesticides,” Mutschler-Chu said.

Cornell University has television and ISDN radio studios available for media interviews.

John Carberry | Newswise
Further information:
http://www.cornell.edu

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>