Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drifting herbicides produce uncertain effects

10.02.2014
Farmers should take extra precautions so drifting herbicides do not create unintended consequences on neighboring fields and farms, according to agricultural researchers.

The researchers found a range of effects -- positive, neutral and negative -- when they sprayed the herbicide dicamba on old fields -- ones that are no longer used for cultivation -- and on field edges, according to J. Franklin Egan, research ecologist, USDA-Agricultural Research Service. He said the effects should be similar for a related compound, 2,4-D.

"The general consensus is that the effects of the increased use of these herbicides are going to be variable," said Egan. "But, given that there is really so much uncertainty, we think that taking precautions to prevent herbicide drift is the right way to go."

Farmers are expected to use dicamba and 2,4-D on their fields more often in the near future because biotechnology companies are introducing crops genetically modified to resist those chemicals. From past experience, 2,4-D and dicamba are the herbicides most frequently involved in herbicide-drift accidents, according to the researchers.

Because the herbicides typically target broadleaf plants, such as wildflowers, they are not as harmful to grasses, Egan said. In the study, the researchers found grasses eventually dominated the field edge test site that was once a mix of broadleaf plants and grass. The old field site showed little response to the herbicide treatments.

Herbicide drift was also associated with the declines of three species of herbivores, including pea aphids, spotted alfalfa aphids and potato leaf hoppers, and an increase in a pest called clover root curculio, Egan said. The researchers found more crickets, which are considered beneficial because they eat weed seeds, in the field edge site.

The researchers, who report their findings in the current issue of Agriculture, Ecosystems and Environment, did not see a drop in the number of pollinators, such as bees, in the fields. However, the relatively small size of the research fields limited the researchers' ability to measure the effect on pollinators, according to Egan.

"That may be because pollinators are very mobile and the spatial scale of our experiment may not be big enough to show any effects," Egan said.

Farmers can cut down on herbicide drift by taking a few precautions, according to Egan. They can spray low-volatility herbicide blends, which are less likely to turn to vapors, and use a nozzle design on the sprayer that produces larger droplets that do not easily drift in the wind.

Egan also recommended that farmers follow application restrictions printed on herbicide labels and try to spray on less windy days when possible.

The tests were conducted on two farms in Pennsylvania. One field edge site was located near a forest and alfalfa field. The old field was an acre plot near Penn State's Russell E. Larson Agricultural Research farm.

Egan worked with Eric Bohnenblust, doctoral candidate in entomology; John Tooker, assistant professor of entomology and extension specialist, and David Mortensen, professor of weed and applied plant ecology, all of Penn State, and Sarah Goslee, U.S. Department of Agriculture ecologist.

The Environmental Protection Agency supported this work.

Matthew Swayne | EurekAlert!
Further information:
http://www.psu.edu

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>