Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deforestation of sandy soils a greater threat to climate change

02.04.2014

Deforestation may have far greater consequences for climate change in some soils than in others, according to new research led by Yale University scientists — a finding that could provide critical insights into which ecosystems must be managed with extra care because they are vulnerable to biodiversity loss and which ecosystems are more resilient to widespread tree removal.

In a comprehensive analysis of soil collected from 11 distinct U.S. regions, from Hawaii to northern Alaska, researchers found that the extent to which deforestation disturbs underground microbial communities that regulate the loss of carbon into the atmosphere depends almost exclusively on the texture of the soil. The results were published in the journal Global Change Biology.


This heat map shows the areas of the United States where the soil microbial biomass is susceptible to changes in vegetation cover.

“We were astonished that biodiversity changes were so strongly affected by soil texture and that it was such an overriding factor,” said Thomas Crowther, a postdoctoral fellow at the Yale School of Forestry & Environmental Studies and lead author of the study. “Texture overrode the effects of all the other variables that we thought might be important, including temperature, moisture, nutrient concentrations, and soil pH.”

The study is a collaboration among Yale researchers and colleagues at the University of Boulder, Colorado and the University of Kentucky.

A serious consequence of deforestation is extensive loss of carbon from the soil, a process regulated by subterranean microbial diversity. Drastic changes to the microbial community are expected to allow more CO2 to escape into the atmosphere, with the potential to exaggerate global warming.

Specifically, the researchers found that deforestation dramatically alters microbial communities in sandy soils, but has minimal effects in muddy, clay-like soils, even after extensive tree removal.

According to the researchers, particles in fine, clay-like soil seem to have a larger surface area to bind nutrients and water. This capacity might buffer soil microbes against the disturbance of forest removal, they said. In contrast, sandy soils have larger particles with less surface area, retaining fewer nutrients and less organic matter.

“If you disrupt the community in a sandy soil, all of the nutrients the microbes rely on for food are leached away: they’re lost into the atmosphere, lost into rivers, lost through rain,” Crowther said. “But in clay-like soil, you can cut down the forest and the nutrients remain trapped tightly in the muddy clay.”

The researchers also examined how the effects of deforestation on microbial biodiversity change over time. Contrary to their expectations, they found no correlation, even over the course of 200 years.

“The effects are consistent, no matter how long ago deforestation happened,” Crowther said. “In a clay soil, you cut down the forest and the nutrients are retained for long periods of time and the community doesn’t change. Whereas in a sandy soil, you cut down a forest and the community changes dramatically within only a couple of years.”

Using previously documented information about soil distribution, the researchers were able to map potential areas where belowground ecosystems are more likely to be vulnerable to deforestation. This has the potential to inform land management practices concerned with the conservation of biodiversity and the sequestration of carbon in the soil.

Co-authors of the study, “Predicting the Responsiveness of Soil Biodiversity to Deforestation: A Cross-Biome Study,” include Daniel S. Maynard, Emily E. Oldfield, and Mark A. Bradford of the Yale School of Forestry & Environmental Studies.

Kevin Dennehy | EurekAlert!
Further information:
http://news.yale.edu/2014/04/01/deforestation-sandy-soils-greater-threat-climate-change

Further reports about: Deforestation Environmental atmosphere capacity microbes microbial nutrients particles soils

More articles from Agricultural and Forestry Science:

nachricht Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli
26.04.2017 | University of the Basque Country

nachricht New data unearths pesticide peril in beehives
21.04.2017 | Cornell University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>