Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deforestation of sandy soils a greater threat to climate change

02.04.2014

Deforestation may have far greater consequences for climate change in some soils than in others, according to new research led by Yale University scientists — a finding that could provide critical insights into which ecosystems must be managed with extra care because they are vulnerable to biodiversity loss and which ecosystems are more resilient to widespread tree removal.

In a comprehensive analysis of soil collected from 11 distinct U.S. regions, from Hawaii to northern Alaska, researchers found that the extent to which deforestation disturbs underground microbial communities that regulate the loss of carbon into the atmosphere depends almost exclusively on the texture of the soil. The results were published in the journal Global Change Biology.


This heat map shows the areas of the United States where the soil microbial biomass is susceptible to changes in vegetation cover.

“We were astonished that biodiversity changes were so strongly affected by soil texture and that it was such an overriding factor,” said Thomas Crowther, a postdoctoral fellow at the Yale School of Forestry & Environmental Studies and lead author of the study. “Texture overrode the effects of all the other variables that we thought might be important, including temperature, moisture, nutrient concentrations, and soil pH.”

The study is a collaboration among Yale researchers and colleagues at the University of Boulder, Colorado and the University of Kentucky.

A serious consequence of deforestation is extensive loss of carbon from the soil, a process regulated by subterranean microbial diversity. Drastic changes to the microbial community are expected to allow more CO2 to escape into the atmosphere, with the potential to exaggerate global warming.

Specifically, the researchers found that deforestation dramatically alters microbial communities in sandy soils, but has minimal effects in muddy, clay-like soils, even after extensive tree removal.

According to the researchers, particles in fine, clay-like soil seem to have a larger surface area to bind nutrients and water. This capacity might buffer soil microbes against the disturbance of forest removal, they said. In contrast, sandy soils have larger particles with less surface area, retaining fewer nutrients and less organic matter.

“If you disrupt the community in a sandy soil, all of the nutrients the microbes rely on for food are leached away: they’re lost into the atmosphere, lost into rivers, lost through rain,” Crowther said. “But in clay-like soil, you can cut down the forest and the nutrients remain trapped tightly in the muddy clay.”

The researchers also examined how the effects of deforestation on microbial biodiversity change over time. Contrary to their expectations, they found no correlation, even over the course of 200 years.

“The effects are consistent, no matter how long ago deforestation happened,” Crowther said. “In a clay soil, you cut down the forest and the nutrients are retained for long periods of time and the community doesn’t change. Whereas in a sandy soil, you cut down a forest and the community changes dramatically within only a couple of years.”

Using previously documented information about soil distribution, the researchers were able to map potential areas where belowground ecosystems are more likely to be vulnerable to deforestation. This has the potential to inform land management practices concerned with the conservation of biodiversity and the sequestration of carbon in the soil.

Co-authors of the study, “Predicting the Responsiveness of Soil Biodiversity to Deforestation: A Cross-Biome Study,” include Daniel S. Maynard, Emily E. Oldfield, and Mark A. Bradford of the Yale School of Forestry & Environmental Studies.

Kevin Dennehy | EurekAlert!
Further information:
http://news.yale.edu/2014/04/01/deforestation-sandy-soils-greater-threat-climate-change

Further reports about: Deforestation Environmental atmosphere capacity microbes microbial nutrients particles soils

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>