Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Covering the bases with cover crops


Optimizing nitrogen, mulch with perfect proportions... and poultry litter

Most of us think that farmers grow and harvest crops for food. That's true for many crops: they either feed humans or farm animals. However, there's another category of crop that has a vital function in agricultural systems.

Pelletized poultry litter was applied using a prototype subsurface band applicator at the five-leaf stage of corn. This method of poultry litter application was compared to no poultry litter application, broadcast at planting, and broadcast at planting with tillage.

Credit: Hanna Poffenbarger

"Cover crops are usually planted between the regular crop production periods," says Hanna Poffenbarger. Poffenbarger is a graduate student in the department of agronomy at Iowa State University. She researched cover crops in her graduate work at the University of Maryland. "They protect the soil from erosion and take up excess nutrients when the ground would otherwise be bare."

Instead of being harvested, many cover crops are returned to the soil. In this way their nutrients can be used by other crops. Legume cover crops, in particular, are an excellent source of nitrogen--a key nutrient for all plant life. Cover crops also control weeds and help to manage pests.

Once the cover crops' season is finished, they need to break down quickly as the next crop begins to grow. Working under the advisement of Steven Mirsky (USDA-ARS) and Ray Weil (University of Maryland), Poffenbarger examined mixtures of two cover crops, cereal rye (a grass) and hairy vetch (a legume).

Cereal rye decomposes slowly and provides long-lasting mulch. This controls weeds and conserves soil moisture. However, it leaves the soil without much nitrogen for any crop planted later. Hairy vetch decomposes faster and provides a more immediate supply of nitrogen, but it doesn't make a good mulch.

What is the perfect proportion of these two cover crops? "We wanted to determine how the composition of the cover crop mixture affects the rate of nitrogen release and the persistence of the mulch," Poffenbarger explains.

A second question was how another source of nitrogen, poultry litter (chicken manure mixed with bedding) affected the cover crop decomposition. Poultry litter is often added to agricultural fields in Maryland, and the study tested decomposition of cover crop mixtures with and without poultry litter.

In general, researchers found more hairy vetch sowed on the field resulted in more nitrogen. The amount of cover crops broken down also increased. Additionally, cover crops combined with poultry litter had even more decomposition and nitrogen release than cover crops alone. However, this result only applied if the cover crop contained at least 50% cereal rye.

The method by which scientists applied poultry litter also played an important role. Poultry litter mixed with cover crop residues increased decomposition and nitrogen release. In contrast, poultry litter applied under the soil surface did not affect these factors.

Poffenbarger's research will be used to develop decision-making tools to help farmers understand which benefits their cover crops can best provide. Some farmers might prefer cover crops that break down slowly, but others may want quick nitrogen release.

"Farmers can use our results to optimize cover crop management for their specific mulch and nitrogen goals," she says.

Poffenbarger notes that future work will provide more information about how cover crops break down in different locations. "The final step," Poffenbarger says, "is to make this information easily available through online resources."


Poffenbarger's research is published in Agronomy Journal. The research was supported by funding from the USDA-NIFA Sustainable Agriculture Research and Education (SARE) program.

Press Office | idw - Informationsdienst Wissenschaft

More articles from Agricultural and Forestry Science:

nachricht Unique communication strategy discovered in stem cell pathway controlling plant growth
23.03.2018 | Cold Spring Harbor Laboratory

nachricht “How trees coexist” – new findings from biodiversity research published in Nature Communications
22.03.2018 | Technische Universität Dresden

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>