Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling Winter Moth Infestation in New England

12.09.2011
A six-year campaign to control invasive winter moths with a natural parasite led by entomologist Joe Elkinton of the University of Massachusetts Amherst now has concrete evidence that a parasitic fly, Cyzenis albicans, has been established and is attacking the pest at four sites in Seekonk, Hingham, Falmouth and Wellesley. It’s the beginning of the end for the decade-long defoliation of eastern Massachusetts trees by the invasive species, Elkinton says.

The researchers marked an important milestone during field work this summer and last, when they recovered winter moth larvae recently parasitized by C. albicans, the parasitic fly, at sites in the four towns. The evidence indicates that the flies had successfully overwintered and are now actively preying on the moth’s young.

The winter moth, Operophtera brumata, invaded the state from Europe more than a decade ago and has caused widespread, damaging defoliation of many deciduous tree species. The moths have moved westward and recently spread to Rhode Island. In many of these areas defoliation has occurred almost every year since the infestation began. As a result, many trees have started to die. Similar winter moth invasions occurred in Nova Scotia in the 1950s and in the Pacific northwest in the 1970s. In each case, outbreaks were permanently controlled by introducing C. albicans, Elkinton adds.

“Because C. albicans was so successful in controlling winter moth in Nova Scotia and the Pacific northwest, it was natural for us to introduce it here in New England using flies my colleagues and I collected in British Columbia,” he notes.

A great advantage of C. albicans is that it is highly specialized to prey on winter moths, so it does not spread to other species. Further, its numbers decline once it gains control, the entomologist points out. It is not attracted to humans or our homes and buildings, so the only impact people will notice is the decline in tree damage.

The researchers have conducted DNA tests that prove the flies recovered in 2010 and 2011 are identical to those they released. “Our experience now matches closely the Nova Scotia project wherein the yearly releases began in 1954, but no recoveries at all were made until 1959. Previous experience in Nova Scotia or British Columbia suggests that the levels of parasitism should now build rapidly in eastern Massachusetts over the next few years,” Elkinton says.

“Now that we know that single releases with a few hundred flies can result in establishment here in New England, we can spread the flies we have to more new sites.” He and his team have now released about 700 flies at each of nine new sites in 2011, including one in Rhode Island.

They also collected 61,000 winter moth pupae that contain C. albicans larva in British Columbia and have sequestered them in the USDA quarantine lab at Otis Air Force Base for release next year in Massachusetts. “Previous experience tells us that about 50 percent of these pupae will contain immature C. albicans. Assuming that we can successfully rear most of these to the adult stage next spring, by May 2012 we should have more flies to release than ever before,” says Elkinton.

The UMass Amherst winter moth control project was begun in 2005 with support from the Massachusetts Legislature, and later the USDA and the Massachusetts Department of Conservation and Recreation. Though budget cutbacks threaten to slow progress, Elkinton is hopeful that efforts will continue to release flies at new locations, because it takes time for only a few thousand flies to catch up with the estimated trillions of winter moths now munching their way across eastern and central Massachusetts.

Joe Elkinton | Newswise Science News
Further information:
http://www.umass.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>