Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost heap bacteria could provide 10% of UK transport fuel needs

09.09.2008
Bacteria found in compost heaps able to convert waste plant fibre into ethanol could eventually provide up 10% of the UK's transport fuel needs, scientists heard today (Tuesday 9 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Researchers from Guildford, UK, have successfully developed a new strain of bacteria that can break down straw and agricultural plant waste, domestic hedge clippings, garden trimmings and cardboard, wood chippings and other municipal rubbish to convert them all into useful renewable fuels for the transport industry.

"The bioethanol produced in our process can be blended with existing gasoline to reduce overall greenhouse gas emissions, help tackle global warming, reduce dependence upon foreign oil and help meet national and international targets for renewable energy," said Paul Milner, Fermentation Development Manager of TMO Renewables Ltd, based in Surrey Research Park, Guildford.

The new strain of bacteria allows ethanol to be produced much more efficiently and cheaply than in traditional yeast-based fermentation, which is based on the beer-brewing process and forms the basis for most current commercial bioethanol production.

"Conventional ethanol production is energy-intensive, expensive, and time-consuming as the barley malt or other material being brewed needs to be heated up as a mash in feedstock pre-treatment. Then it is significantly cooled from that high temperature to a lower temperature for yeast fermentation, only to be re-heated when it is later distilled into ethanol. Our process is much more energy-efficient." said Paul Milner.

TMO's microbiologists screened thousands of different wild types of bacteria, looking for one that could survive high temperatures and that liked feeding off a wide variety of plant based materials.

"We found some heat-loving bacteria in a compost heap, from the Geobacillus family, which in their wild form produce lactic acid as a by-product of sugar synthesis when they break down biomass," said Paul Milner. "We altered their internal metabolism, adapting them to produce substantial amounts of ethanol instead".

"Our new microorganism, called TM242, can efficiently convert the longer-chain sugars from woody biomass materials into ethanol. This thermophilic bacterium operates at high temperatures of 60oC-70oC and digests a wide range of feedstocks very rapidly," said Paul Milner.

The scientists estimate that some 7 million tons of surplus straw is available in the UK every year. Turning it into ethanol could replace 10% of the gasoline fuel used in this country. "As our process uses agricultural waste materials such as straw, wood, paper and plants and other cellulosic fibre from domestic and municipal waste, it provides significantly greater environmental and economic benefits than crop-derived biofuels which some believe have contributed to the increased prices of basic food in so many countries," said Paul Milner.

"We have recently completed commissioning the UK's first cellulosic ethanol demonstration facility - one of just a handful worldwide," said Paul Milner. "We are constantly researching new, better ways to produce biofuels. We also believe that our process can be used successfully beyond biofuels to produce other high-value chemicals and drug ingredients that are currently derived from oil."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>