Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compost heap bacteria could provide 10% of UK transport fuel needs

09.09.2008
Bacteria found in compost heaps able to convert waste plant fibre into ethanol could eventually provide up 10% of the UK's transport fuel needs, scientists heard today (Tuesday 9 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

Researchers from Guildford, UK, have successfully developed a new strain of bacteria that can break down straw and agricultural plant waste, domestic hedge clippings, garden trimmings and cardboard, wood chippings and other municipal rubbish to convert them all into useful renewable fuels for the transport industry.

"The bioethanol produced in our process can be blended with existing gasoline to reduce overall greenhouse gas emissions, help tackle global warming, reduce dependence upon foreign oil and help meet national and international targets for renewable energy," said Paul Milner, Fermentation Development Manager of TMO Renewables Ltd, based in Surrey Research Park, Guildford.

The new strain of bacteria allows ethanol to be produced much more efficiently and cheaply than in traditional yeast-based fermentation, which is based on the beer-brewing process and forms the basis for most current commercial bioethanol production.

"Conventional ethanol production is energy-intensive, expensive, and time-consuming as the barley malt or other material being brewed needs to be heated up as a mash in feedstock pre-treatment. Then it is significantly cooled from that high temperature to a lower temperature for yeast fermentation, only to be re-heated when it is later distilled into ethanol. Our process is much more energy-efficient." said Paul Milner.

TMO's microbiologists screened thousands of different wild types of bacteria, looking for one that could survive high temperatures and that liked feeding off a wide variety of plant based materials.

"We found some heat-loving bacteria in a compost heap, from the Geobacillus family, which in their wild form produce lactic acid as a by-product of sugar synthesis when they break down biomass," said Paul Milner. "We altered their internal metabolism, adapting them to produce substantial amounts of ethanol instead".

"Our new microorganism, called TM242, can efficiently convert the longer-chain sugars from woody biomass materials into ethanol. This thermophilic bacterium operates at high temperatures of 60oC-70oC and digests a wide range of feedstocks very rapidly," said Paul Milner.

The scientists estimate that some 7 million tons of surplus straw is available in the UK every year. Turning it into ethanol could replace 10% of the gasoline fuel used in this country. "As our process uses agricultural waste materials such as straw, wood, paper and plants and other cellulosic fibre from domestic and municipal waste, it provides significantly greater environmental and economic benefits than crop-derived biofuels which some believe have contributed to the increased prices of basic food in so many countries," said Paul Milner.

"We have recently completed commissioning the UK's first cellulosic ethanol demonstration facility - one of just a handful worldwide," said Paul Milner. "We are constantly researching new, better ways to produce biofuels. We also believe that our process can be used successfully beyond biofuels to produce other high-value chemicals and drug ingredients that are currently derived from oil."

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

Carcinogenic soot particles from GDI engines

24.05.2017 | Life Sciences

A quantum walk of photons

24.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>