Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commonly used pesticide turns honey bees into 'picky eaters'

24.05.2012
Biologists at UC San Diego have discovered that a small dose of a commonly used crop pesticide turns honey bees into "picky eaters" and affects their ability to recruit their nestmates to otherwise good sources of food.
The results of their experiments, detailed in this week's issue of the Journal of Experimental Biology, have implications for what pesticides should be applied to bee-pollinated crops and shed light on one of the main culprits suspected to be behind the recent declines in honey bee colonies.

Since 2006, beekeepers in North America and Europe have lost about one-third of their managed bee colonies each year due to "colony collapse disorder." While the exact cause is unknown, researchers believe pesticides have contributed to this decline. One group of crop pesticides, called "neonicotinoids," has received particular attention from beekeepers and researchers.

The UC San Diego biologists focused their study on a specific neonicotinoid known as "imidacloprid," which has been banned for use in certain crops in some European countries and is being increasingly scrutinized in the United States.

"In 2006, it was the sixth most commonly used pesticide in California and is sold for agricultural and home garden use," said James Nieh, a professor of biology at UC San Diego who headed the research project with graduate student Daren Eiri, the first author of the study. "It is known to affect bee learning and memory."

The two biologists found in their experiments that honey bees treated with a small, single dose of imidacloprid, comparable to what they would receive in nectar, became "picky eaters."

"In other words, the bees preferred to only feed on sweeter nectar and refused nectars of lower sweetness that they would normally feed on and that would have provided important sustenance for the colony," said Eiri. "In addition, bees typically recruit their nestmates to good food with waggle dances, and we discovered that the treated bees also danced less."

The two researchers point out that honey bees that prefer only very sweet foods can dramatically reduce the amount of resources brought back to the colony. Further reductions in their food stores can occur when bees no longer communicate to their kin the location of the food source.

"Exposure to amounts of pesticide formerly considered safe may negatively affect the health of honey bee colonies," said Nieh.

To test how the preference of sugary sources changed due to imidacloprid, the scientists individually harnessed the bees so only their heads could move. By stimulating the bees' antennae with sugar water, the researchers were able to determine at what concentrations the sugar water was rewarding enough to feed on. Using an ascending range of sugar water from 0 to 50 percent, the researchers touched the antennae of each bee to see if it extended its mouthparts. Bees that were treated with imidacloprid were less willing to feed on low concentrations of sugar water than those that were not treated.

The biologists also observed how the pesticide affected the bees' communication system. Bees communicate to each other the location of a food source by performing waggle dances. The number of waggle dances performed indicates the attractiveness of the reward and corresponds to the number of nestmates recruited to good food.

"Remarkably, bees that fed on the pesticide reduced the number of their waggle dances between fourfold and tenfold," said Eiri. "And in some cases, the affected bees stopped dancing completely."

The two scientists said their discoveries not only have implications for how pesticides are applied and used in bee-pollinated crops, but provide an additional chemical tool that can be used by other researchers studying the neural control of honey bee behavior. The study was funded by the North American Pollinator Protection Campaign and the National Science Foundation.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Agricultural and Forestry Science:

nachricht Raiding the rape field
23.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>