Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Commonly used pesticide turns honey bees into 'picky eaters'

24.05.2012
Biologists at UC San Diego have discovered that a small dose of a commonly used crop pesticide turns honey bees into "picky eaters" and affects their ability to recruit their nestmates to otherwise good sources of food.
The results of their experiments, detailed in this week's issue of the Journal of Experimental Biology, have implications for what pesticides should be applied to bee-pollinated crops and shed light on one of the main culprits suspected to be behind the recent declines in honey bee colonies.

Since 2006, beekeepers in North America and Europe have lost about one-third of their managed bee colonies each year due to "colony collapse disorder." While the exact cause is unknown, researchers believe pesticides have contributed to this decline. One group of crop pesticides, called "neonicotinoids," has received particular attention from beekeepers and researchers.

The UC San Diego biologists focused their study on a specific neonicotinoid known as "imidacloprid," which has been banned for use in certain crops in some European countries and is being increasingly scrutinized in the United States.

"In 2006, it was the sixth most commonly used pesticide in California and is sold for agricultural and home garden use," said James Nieh, a professor of biology at UC San Diego who headed the research project with graduate student Daren Eiri, the first author of the study. "It is known to affect bee learning and memory."

The two biologists found in their experiments that honey bees treated with a small, single dose of imidacloprid, comparable to what they would receive in nectar, became "picky eaters."

"In other words, the bees preferred to only feed on sweeter nectar and refused nectars of lower sweetness that they would normally feed on and that would have provided important sustenance for the colony," said Eiri. "In addition, bees typically recruit their nestmates to good food with waggle dances, and we discovered that the treated bees also danced less."

The two researchers point out that honey bees that prefer only very sweet foods can dramatically reduce the amount of resources brought back to the colony. Further reductions in their food stores can occur when bees no longer communicate to their kin the location of the food source.

"Exposure to amounts of pesticide formerly considered safe may negatively affect the health of honey bee colonies," said Nieh.

To test how the preference of sugary sources changed due to imidacloprid, the scientists individually harnessed the bees so only their heads could move. By stimulating the bees' antennae with sugar water, the researchers were able to determine at what concentrations the sugar water was rewarding enough to feed on. Using an ascending range of sugar water from 0 to 50 percent, the researchers touched the antennae of each bee to see if it extended its mouthparts. Bees that were treated with imidacloprid were less willing to feed on low concentrations of sugar water than those that were not treated.

The biologists also observed how the pesticide affected the bees' communication system. Bees communicate to each other the location of a food source by performing waggle dances. The number of waggle dances performed indicates the attractiveness of the reward and corresponds to the number of nestmates recruited to good food.

"Remarkably, bees that fed on the pesticide reduced the number of their waggle dances between fourfold and tenfold," said Eiri. "And in some cases, the affected bees stopped dancing completely."

The two scientists said their discoveries not only have implications for how pesticides are applied and used in bee-pollinated crops, but provide an additional chemical tool that can be used by other researchers studying the neural control of honey bee behavior. The study was funded by the North American Pollinator Protection Campaign and the National Science Foundation.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>