Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cactus genes connect modern Mexico to its prehistoric past

In prehistoric times farmers across the world domesticated wild plants to create an agricultural revolution. As a result the ancestral plants have been lost, causing problems for anyone studying the domestication process of modern-day varieties, but that might change.

A team led by Fabiola Parra at the Universidad Nacional Autónoma de México (UNAM) has managed to trace a domesticated cactus, the Gray Ghost Organ Pipe (Stenocereus pruinosus) to its living ancestor that can still be found in the Tehuacán Valley in Mexico. The research is published in the September 2010 edition of the Annals of Botany at

Cacti were domesticated in prehistoric times for their fruit, pitaya. They're eaten around the world, but it's the pitaya of the Gray Ghost Organ Pipe that are most prized for their quality. Parra's team went to the Tehuacán valley to examine the cacti and how they grew both in gardens and forests managed by the local people and in the wild.

Dr. Alejandro Casas, an ethnobotanist on the project, said: "What we found is that the people of the Tehuacán Valley are carefully selecting and cultivating cacti to produce the pitaya they want. They're not attempting to produce one type of pitayo. They have a rich understanding of the cacti and are able to produce fruits with a variety of colours and tastes."

Genetic analysis revealed the garden cacti were more likely to carry duplicate copies of alleles (gene variants) in their chromosomes than their wild counterparts. It shows that evidence of artificial selection has left its mark in the cactus DNA. However, the genes from cacti grown using traditional methods in managed forests showed that domestication is not a simple process.

Casas added: "We found that the forest cacti showed more diversity in their genes than expected. It is not a case of finding a simple transition from wild to domesticated plants. The methods of propagation of cacti by the traditional farmers, including the production of a variety of fruits, help increase the genetic diversity of the cacti. This is a crucial strategy in conserving the genetic resources of Mesoamerica. In contrast agriculture in the industrialised world aims for mass-produced conformity in fruit."

Dr. Mark Olson, a biologist at UNAM who did not participate in the project, believes the research has significant implications for the future: "Mesoamerica is a real laboratory for the study of evolution and domestication is one of the most important ways available for studying the evolutionary process. It is a rare luxury to be able to study not only the descendants of selection but also to be able to examine a true living ancestor.

"Perhaps more than any other region on earth, Mesoamerica has a range of grades of domestication, from the highly modified, such as maize, to plants only casually managed and in stages of 'incipient domestication'. Understanding this process will be important as Mexico becomes inundated with commercial varieties of corn, beans and other plants, all growing next to their wild ancestors."

Whether or not the future includes a domesticated Gray Ghost Organ Pipe remains to be seen. Parra notes that even cacti are struggling with the diminishing rainfall. This, and economic pressures, means that the traditional farming methods are in decline and may be lost in the future.

Editors Notes:

This research is published in the paper 'Evolution under domestication: ongoing artificial selection and divergence of wild and managed Stenocereus pruinosus (Cactaceae) populations in the Tehuacán Valley, Mexico' in the September issue of Annals of Botany, a monthly academic journal covering all areas of plant science.

For further details please contact the Annals of Botany
Dr David Frost
Managing Editor, Annals of Botany
Department of Biology
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom
Phone: +44 (0)116 252 3396

Dr. David Frost | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>