Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cactus genes connect modern Mexico to its prehistoric past

25.08.2010
In prehistoric times farmers across the world domesticated wild plants to create an agricultural revolution. As a result the ancestral plants have been lost, causing problems for anyone studying the domestication process of modern-day varieties, but that might change.

A team led by Fabiola Parra at the Universidad Nacional Autónoma de México (UNAM) has managed to trace a domesticated cactus, the Gray Ghost Organ Pipe (Stenocereus pruinosus) to its living ancestor that can still be found in the Tehuacán Valley in Mexico. The research is published in the September 2010 edition of the Annals of Botany at http://aob.oxfordjournals.org/cgi/content/abstract/106/3/483

Cacti were domesticated in prehistoric times for their fruit, pitaya. They're eaten around the world, but it's the pitaya of the Gray Ghost Organ Pipe that are most prized for their quality. Parra's team went to the Tehuacán valley to examine the cacti and how they grew both in gardens and forests managed by the local people and in the wild.

Dr. Alejandro Casas, an ethnobotanist on the project, said: "What we found is that the people of the Tehuacán Valley are carefully selecting and cultivating cacti to produce the pitaya they want. They're not attempting to produce one type of pitayo. They have a rich understanding of the cacti and are able to produce fruits with a variety of colours and tastes."

Genetic analysis revealed the garden cacti were more likely to carry duplicate copies of alleles (gene variants) in their chromosomes than their wild counterparts. It shows that evidence of artificial selection has left its mark in the cactus DNA. However, the genes from cacti grown using traditional methods in managed forests showed that domestication is not a simple process.

Casas added: "We found that the forest cacti showed more diversity in their genes than expected. It is not a case of finding a simple transition from wild to domesticated plants. The methods of propagation of cacti by the traditional farmers, including the production of a variety of fruits, help increase the genetic diversity of the cacti. This is a crucial strategy in conserving the genetic resources of Mesoamerica. In contrast agriculture in the industrialised world aims for mass-produced conformity in fruit."

Dr. Mark Olson, a biologist at UNAM who did not participate in the project, believes the research has significant implications for the future: "Mesoamerica is a real laboratory for the study of evolution and domestication is one of the most important ways available for studying the evolutionary process. It is a rare luxury to be able to study not only the descendants of selection but also to be able to examine a true living ancestor.

"Perhaps more than any other region on earth, Mesoamerica has a range of grades of domestication, from the highly modified, such as maize, to plants only casually managed and in stages of 'incipient domestication'. Understanding this process will be important as Mexico becomes inundated with commercial varieties of corn, beans and other plants, all growing next to their wild ancestors."

Whether or not the future includes a domesticated Gray Ghost Organ Pipe remains to be seen. Parra notes that even cacti are struggling with the diminishing rainfall. This, and economic pressures, means that the traditional farming methods are in decline and may be lost in the future.

Editors Notes:

This research is published in the paper 'Evolution under domestication: ongoing artificial selection and divergence of wild and managed Stenocereus pruinosus (Cactaceae) populations in the Tehuacán Valley, Mexico' in the September issue of Annals of Botany, a monthly academic journal covering all areas of plant science.

For further details please contact the Annals of Botany
Dr David Frost
Managing Editor, Annals of Botany
Department of Biology
University of Leicester
University Road
Leicester LE1 7RH
United Kingdom
E-mail: annalsbotany@le.ac.uk
Phone: +44 (0)116 252 3396

Dr. David Frost | EurekAlert!
Further information:
http://www.le.ac.uk
http://dx.doi.org/10.1093/aob/mcq143

More articles from Agricultural and Forestry Science:

nachricht Faba fix for corn's nitrogen need
11.04.2018 | American Society of Agronomy

nachricht Wheat research discovery yields genetic secrets that could shape future crops
09.04.2018 | John Innes Centre

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>