Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blossom end rot plummets in Purdue-developed transgenic tomato

22.05.2012
The brown tissue that signals blossom end rot in tomatoes is a major problem for large producers and home gardeners, but a Purdue University researcher has unknowingly had the answer to significantly lowering occurrences of the disease sitting on a shelf for 20 years.
In the early 1990s, horticulture professor Avtar Handa developed a transgenic tomato with a thicker juice that yields 10 percent more tomato paste than parental, non-engineered tomatoes. He said large commercial producers were interested but weren't ready to bring a transgenic tomato on the market, especially with the regulatory approval process that was required. So the research findings were published and the seeds stored away.

About two years ago, researchers at the University of California-Davis asked Handa for seeds from this tomato line. They were particularly interested in Handa's observations about how the tomatoes stored calcium, as several fruit diseases are thought to be caused by calcium deficiency. In particular, blossom end rot results in dark, softened spots on the end of tomatoes.

"Calcium is difficult to move from the soil into the plant," Handa said. "It is a major problem in tomatoes and many other fruit crops."

Handa shared his seeds with Elizabeth Mitcham, a post-harvest pomologist, and Sergio Tonetto de Freitas, formerly a doctoral student and now a postdoctoral researcher, both at UC Davis. They found that Handa's tomato plants essentially allow more calcium to be free and mobile in tomato cells, significantly reducing the occurrence of blossom end rot. According to the findings, published in the early online version of The Plant Journal, about 80 percent of wild-type tomatoes will suffer from blossom end rot in conditions conducive to the disease. Under similar conditions, only 30 percent of Handa's transgenic tomatoes develop blossom end rot.

"It's a significant decrease - more than twofold," Mitcham said.

Non-engineered tomatoes produce high levels of an enzyme called pectin methylesterases, which creates free carboxylic acids in fruit cell walls. These acids bind calcium and immobilize it in the fruit, Handa said.
"If you have a lot of pectin methylesterase activity, much of the calcium in the cells becomes bound to the cell wall," Mitcham said. "That calcium is then unavailable to protect the cell membrane and prevent these physiological disorders."

Handa's strategy for producing thicker juices involved silencing pectin methylesterase production in a transgenic tomato, greatly reducing the binding sites for calcium within the fruit cell walls. That allowed the calcium to be used in other parts of the tomato's cells.

"Freed-up calcium from cell walls likely overcomes the underlying cause of blossom end rot," Handa said.

Mitcham will continue to study the mechanisms that cause blossom end rot in tomatoes, as well as how pectin methylesterases and calcium may play roles in other plant diseases thought to be caused by calcium deficiencies, including in apples, lettuce, peppers and watermelons.

Handa said this development, and the fact transgenic plants have become more common, might get tomato producers interested in the tomato genotype he developed more than 20 years ago.

"We're coming to a time when people are starting to use genetically modified crops," Handa said. "The technology is matured and dependable and ready to be used now."

The U.S. Department of Agriculture, a CAPES Foundation and Fulbright Program scholarship funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu
Sources: Avtar Handa, 765-494-1339, ahanda@purdue.edu
Elizabeth Mitcham, 530-752-7512, ejmitcham@ucdavis.edu
Ag Communications: (765) 494-2722;
Keith Robinson, robins89@purdue.edu
Agriculture News Page

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>