Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In beef production, cow-calf phase contributes most greenhouse gases

31.01.2013
Data could help farmers reduce emissions

Scientists have long known that cattle produce carbon dioxide and methane throughout their lives, but a new study pinpoints the cow-calf stage as a major contributor of greenhouse gases during beef production.

In a new paper for the Journal of Animal Science, scientists estimate greenhouse gas emissions from beef cattle during different stages of life. They show that, depending on which production system farmers used, beef production has a carbon footprint ranging from 10.7 to 22.6 kg of carbon dioxide equivalent per kg of hot carcass weight.

According to study co-author Frank Mitloehner, an associate professor in the Department of Animal Science at UC Davis, one source of greenhouse gases was surprising.

"If you look at everything that contributes to greenhouse gases through the beef supply chain, then it is the cow-calf that produces the greatest greenhouse gases," Mitloehner said.

In the cow-calf phase, the cow gives birth and nurses the calf until the calf is six to 10 months old. During this time, the cow eats rough plants like hay and grasses. The methane-producing bacteria in the cow's gut thrive on these plants.

"The more roughage is in the diet of the ruminant animal, the more methane is produced by the microbes in the gut of the ruminant, and methane comes out the front end," Mitloehner said.

In feedlots, by contrast, cattle eat mostly corn and grains, which the methane-producing bacteria cannot use as effectively.

Methane is one of the most important greenhouse gases. Methane has a greater capacity to trap heat in the atmosphere than carbon dioxide.

The beef industry has been paying close attention to greenhouse gas emissions in recent years.

"We are doing a lot to measure and mitigate our impact," said Chase Adams, director of communications for the National Cattlemen's Beef Association.

In a 2011 paper for the Journal of Animal Science, researcher Jude Capper showed that the beef industry today uses significantly less water and land than 30 years ago. The industry has also reduced its carbon footprint by 16.3 percent per billion kilograms of beef produced.

According to Mitloehner, beef producers can further reduce their carbon impact by using new technologies like growth promotants. However, consumers are often uncomfortable with these methods, and they choose organic beef or beef with reduced amounts of growth promotants.

"The technologies many consumers are critical of are those that help us receive the greatest environmental gains," Mitloehner said.

The study by Mitloehner and his colleagues is titled "Carbon footprint and ammonia emissions of California beef production systems." It can be read in full at journalofanimalscience.org.

Media contact:

Amy Stewart
American Society of Animal Science
amystewart@ucdavis.edu

Madeline McCurry-Schmidt | EurekAlert!
Further information:
http://www.asas.org

More articles from Agricultural and Forestry Science:

nachricht Rainforest protection akin to speed limit control
16.04.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Diversity in a monoculture
15.04.2015 | Max-Planck-Institut für chemische Ökologie

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>