Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Assay Helps Track Termites, Other Insects

17.02.2010
An Agricultural Research Service (ARS)-developed method to safely and reliably mark termites and other insects over vast acreage so their movements can be tracked is just as effective as the previous method—and more affordable.

That's according to recently published research by ARS entomologist James Hagler, at the agency's U.S. Arid-Land Agricultural Research Center in Maricopa, Ariz., and his collaborators at the University of Arizona.

They studied the movement patterns of the desert subterranean termite, which poses a threat to wood structures in the southwestern United States and causes an estimated $1.5 billion in losses each year. In the early 1990s, Hagler developed the first-generation immunoglobulin G (IgG) protein insect markers, which used expensive rabbit or chicken IgG proteins to track insects.

In a recent study, the scientists tested the rabbit IgG protein mark on termites in three field locations across the Arizona desert landscape. Each location consisted of 51 termite feeding stations placed at various distances around a rabbit-IgG-impregnated central feeding station infested with termites.

The protein would later be detected on field-collected termites using a rabbit-IgG-specific assay. The study showed that the rabbit protein marked the termites as they fed on the bait placed in the central feeding station, even after long-term exposure to harsh desert elements.

Now Hagler and his cooperators have developed a less expensive method of marking the insects with egg white, cow milk, or soy milk proteins, which can be sprayed on insects in the field using conventional spray equipment such as helicopters, airplanes and ground rigs. Each protein is detected by a protein-specific ELISA test. The test is less expensive because the assays have been optimized for mass production.

Working alongside fellow ARS entomologist Steven Naranjo in Maricopa and collaborators at the University of Arizona and the University of California, Hagler has also successfully tested this method on a wide variety of pest and beneficial insects.

Ultimately this state-of-the-art method will lead to better and more cost-effective control of termites, glassy-winged sharpshooters, lygus bugs, mosquitoes and other pests.

Results of two termite studies were recently published in the International Union for the Study of Social Insects' scientific journal Insectes Sociaux.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture.

Alfredo Flores | EurekAlert!
Further information:
http://www.ars.usda.gov

Further reports about: ARS Agricultural Research Arizona IgG protein TRACK Termites insects soy milk proteins

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>