Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient High-Altitude Trees Grow Faster as Temperatures Rise

17.11.2009
Increasing temperatures at high altitudes are fueling the post-1950 growth spurt seen in bristlecone pines, the world's oldest trees, according to new research.
Pines close to treeline have wider annual growth rings for the period from
1951 to 2000 than for the previous 3,700 years, reports a University of Arizona-led research team. Regional temperatures have increased, particularly at high elevations, during the same 50-year time period.

"We're showing this increased growth rate at treeline in a number of locations," said Matthew W. Salzer, a research associate at UA's Laboratory of Tree-Ring Research. "It's unique in several millennia, and it's related specifically to treeline."

Bristlecone pines live for thousands of years on dry, windswept, high-elevation mountain slopes in the western U.S. The scientists collected and analyzed tree rings from Great Basin bristlecone pines located in three mountain ranges in eastern California and Nevada that are separated by hundreds of miles.

Only trees growing within about 500 feet (150 meters) of treeline showed the surge in growth. In general, those trees were at or above about 11,000 feet (3,300 meters) in elevation.

"You can come downslope less than 200 vertical meters and sample the same species of tree, and it won't show the same wide band of growth," Salzer said.

Growth at the pines' upper elevational range is limited by cold temperatures. At the lower elevations, growth of the trees is limited by moisture more than temperature, Salzer said.

Co-author Malcolm K. Hughes said, "Something very unusual is happening at high elevations, and this is one more piece of evidence for that." One other example, he said, was the accelerated melting of small glaciers at high altitudes.

"There is increasingly rapid warming in western North America," said Hughes, a UA Regents' Professor of dendrochronology. "The higher you go, the faster it's warming. We think our finding may be part of that whole phenomenon."

Salzer, Hughes and their co-authors Andrew G. Bunn of Western Washington University in Bellingham and Kurt F. Kipfmueller of the University of Minnesota in Minneapolis will publish their paper, "Recent Unprecedented Tree-ring Growth in Bristlecone Pine at the Highest Elevations and Possible Causes," in this week's Early Online edition of the Proceedings of the National Academy of Sciences. The National Science Foundation funded the research.

Individual Great Basin bristlecone pines, Pinus longaeva, are the longest-living organisms known. The trees live at an elevation range of approximately 8,200 to 11,400 feet (about 2,500 to 3,500 meters). The oldest living bristlecone, almost 5,000 years old, is in California's White Mountains.

The trees' longevity coupled with the excellent preservation of trunks from even older dead trees has allowed some scientists to reconstruct regional climate 8,000 years into the past using tree-ring records from bristlecone pines.

The recent rapid growth of three species of pines at elevations close to treeline had been noticed more than 25 years ago by previous researchers from UA's Laboratory of Tree-Ring Research. The sudden growth surge was puzzling in trees hundreds to thousands of years old, well past adolescence.

"It means there has been some environmental change that affected the trees'
ability to make wood," Salzer said. "The place they were living wasn't as limiting to their growth anymore."

Salzer and his colleagues wanted to study trees whose growth was strongly affected by temperature.

"Where do you go to look for trees where ring width is related to temperature? You look for trees in high mountain ranges, where the mountain continues up and the trees don't follow," Salzer said. "As you go up, the main thing that's changing in these places is temperature."

He and his colleagues chose to extend the previous research efforts. The scientists used the previous researchers' data and also took new bristlecone pine cores to increase the number of samples available for analysis.

The team analyzed the average and median width of tree rings for 50-year blocks of time, starting with the latter half of the 20th century, the years

1951 to 2000, and going backward in time to 2650 B.C. The analysis spans more than 4,600 years.

To see how the annual growth rings changed with temperature, the team used a new method of mapping climate data called PRISM that was unavailable to researchers 25 years ago.

PRISM combines weather records and knowledge of how topography affects weather and climate to provide state-of-the-art climate information going back 100 years for specific locations. PRISM stands for "Parameter-elevation Regressions on Independent Slopes Model."

The tree-ring researchers found that the chronological timing of the wider tree rings correlates with increasing temperatures from the PRISM climate map.

Hughes said that increasing temperatures high in the mountains could have significant effects elsewhere. In many areas of the western U.S., mountains are a key source of water for farms and urban areas at lower elevations.

"If the snow melts earlier, the mountains won't be able to hold onto water for as long," Hughes said. "They won't be as effective as water towers for us."

The same pattern of high-elevation growth increases has also been observed in Rocky Mountain bristlecone pines, including ones in Arizona's San Francisco Peaks, Salzer said. He plans to expand the research to investigate high-altitude trees at additional locations.

Contact information:

Matthew Salzer, 520-621-2946.
msalzer@ltrr.arizona.edu
Malcolm Hughes, 520-621-6470,
mhughes@ltrr.arizona.edu
Related Web sites:
Matthew Salzer
http://www.ltrr.arizona.edu/~msalzer/
Malcolm Hughes
http://www.ltrr.arizona.edu/people/8
PRISM
http://www.prism.oregonstate.edu/

Mari N. Jensen | University of Arizona
Further information:
http://www.arizona.edu
http://www.nsf.gov/news/newsmedia/treerings/index.html

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>