Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research experts: Managing grazing lands with fire improves profitability

29.03.2011
Texas Agrilife Research fire and brush control studies in the Rolling Plains on a working ranch-scale showed the benefits and limitations of managed fires for reducing mesquite encroachment while sustaining livestock production.

The head fire is set in a paddock as a part of a managed fire during the Waggoner Ranch study. (Texas AgriLife Research photo by Dr. Richard Teague)

Dr. Richard Teague, AgriLife Research rangeland ecology and management scientist, along with colleagues Dr. Jim Ansley, brush ecologist, and Dr. Bill Pinchak, animal nutritionist, spent more than 10 years trying to determine how effective prescribed fire could be in reducing mesquite and cactus on the Waggoner Ranch south of Vernon.

Three major conclusions of the study were: fire is effective only at low levels of mesquite encroachment; 12 percent of the unit must be burned each year; and stocking rates should be light — 12 percent lower than the "moderate" Natural Resources Conservation Service level for the range type and range condition, Teague said.

To determine the potential of fire to reduce brush and prickly pear and how to manage the fire for maximum effectiveness, they looked at: effect of brush abundance on forage production and composition; how quickly the brush and cactus increased; treatment longevity; effect of grazing management on grass production and animal performance; and economic returns.

A paddock the day after the burn on the Waggoner Ranch shows the impact on mesquite and prickly pear. (Texas AgriLife Research photo by Dr. Richard Teague)

To ensure effective burns, it is necessary to have approximately 2,000 pounds of fuel per acre for each burn, Teague said. In an area where plant growth and rainfall vary each year, it's most important to choose a stocking rate that allows for sufficient buildup of fuel.

Rotational grazing systems provide sufficient grass fuel and continuity of fuel for the fire to be effective and for adequate post-fire grass recovery, he said.

With three experimental treatments and two replications covering an area of about 34,000 acres, the study was started in 1995 with Hereford cow-calf herds of the same age composition at moderate stocking rates. Treatment areas ranged from 3,000-5,000 acres and three rotational grazing systems were compared under continuous grazing.

The paddock after spring green up shows how the grass recovered. (Texas AgriLife Research photo by Dr. Richard Teague)

"Fire is by far the least expensive means of reducing brush, and it should be used whenever possible to minimize the use of more expensive treatments," Teague said. "But our study suggests that fire can be used only for maintenance of low mesquite cover."

The mesquite cover studied doubled to 40 percent coverage in seven years – more than expected – and resulted in a significant decrease in forage production, Teague said.

"At that rate of increase of mesquite, if a manager starts using fire at greater than 15 percent brush cover in the first area to be treated, by the time four to five years have elapsed the brush cover would have increased to 30 to 40 percent in the areas still to be burned," he said. "This is far too high for fire to be effective."

Teague said for lowest-cost brush reduction, burning must be done regularly at six to seven year intervals.

"At levels of mesquite above 15 to 20 percent, something more expensive like root-killing herbicides is needed to restore the productivity of the rangeland," he said. "Where mesquite cover is low enough to use fire effectively, the use of fire as a follow-up to herbicide treatment would be economically superior to using herbicide with no follow-up burn."

If the mesquite cover is 30 percent or higher, forage and fuel levels are reduced so fire is less effective in reducing mesquite, Teague said. Also, with this amount of mesquite, winter grass becomes more abundant than summer grass. And because winter grasses are usually green at that time, the winter fire effectiveness is further reduced.

"This can be offset partially by burning in late summer, since summer fires are more effective in reducing both mesquite and prickly pear, and in summer, the winter grasses are dry and provide excellent fuels," Teague said.

Using a rotational grazing strategy to rest areas for an entire growing season allowed the best fuel load for the precipitation received and improved the litter and grass cover, he said. This reduced soil temperature, runoff and erosion, and increased soil carbon. Post-fire deferment also is needed to ensure adequate recovery of palatable grasses and litter cover.

Ranchers know that failure to maintain low levels of mesquite populations in pastures results in decreased livestock carrying capacity and increases the dependence on more expensive restoration practices, as well as increases the ecological impact, Teague said.

"With fire being so much less expensive than alternative treatments, our economic assessments indicate that stocking rates can be lowered by 25 percent and still be economically competitive with alternative brush treatments as long as fire is used regularly," he said.

Dr. Richard Teague | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>