Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Greener Way to Fertilize Nursery Crops

28.08.2012
A U.S. Department of Agriculture (USDA) scientist has found a "green" alternative to a type of fertilizer additive that is believed to contribute to the accumulation of heavy metals in waterways.

Ornamental nursery and floral crops require micronutrients like iron, manganese, copper and zinc. But fertilizers that provide these micronutrients often include synthetically produced compounds that bind with the micronutrients so they are available in the root zone.

The most commonly used compounds, known as chelating agents, are not readily biodegradable, and can extract metals from sediments. Their use is believed to add to the amounts of iron and other heavy metals that sometimes flow into or become soluble in waterways. Concerns in Europe about one, called EDTA, have prompted calls there for use of alternative chelating agents.

Joseph Albano, a horticulturalist with the Agricultural Research Service (ARS) U.S. Horticultural Research Laboratory in Fort Pierce, Fla., thinks he has found a "green" alternative for the floral and nursery crop industries. ARS is USDA's principal intramural scientific research agency, and this research supports USDA's commitment to agricultural sustainability.

Albano's alternative chelating agent is known as EDDS. It is a natural compound that is biodegradable and less likely to persist in the environment.

In a series of studies, Albano grew marigolds in standard soil-less potting media using fertilizers formulated with EDDS or one of two commonly used chelating agents: EDTA and DTPA. Each of the three treatments was chelated with iron so Albano could assess the effectiveness of EDDS as a fertilizer iron source.

The results showed that EDDS was a suitable chelating agent for use in fertilizers. There were no differences in plant growth or leaf-tissue iron levels among plants grown with iron-EDDS, those grown with iron-EDTA, or those grown with iron-DTPA fertilizers.

Iron-chelates, like iron-EDTA and iron-DTPA, degrade when exposed to light (photodegradation), so they are often stored in opaque containers that prevent exposure to sunlight. Albano also assessed iron-EDDS photodegradation and discovered that iron-EDDS degraded more quickly than iron-EDTA when exposed to light, which would contribute to its low persistence in the environment. Given how quickly it degrades, Albano recommends that iron-EDDS chelates also be stored in opaque containers.

The report, published in HortScience, was the first peer-reviewed study to evaluate EDDS as a chelating agent in fertilizers used in the production of a floricultural crop, according to Albano. The work is expected to encourage the use of EDDS as an environmentally friendly chelating agent in floral and nursery crop operations.

Read more about this research in the August 2012 issue of Agricultural Research magazine.

Dennis O’Brien | EurekAlert!
Further information:
http://www.ars.usda.gov
http://www.ars.usda.gov/is/pr/2012/120827.htm

More articles from Agricultural and Forestry Science:

nachricht Kakao in Monokultur verträgt Trockenheit besser als Kakao in Mischsystemen
18.09.2017 | Georg-August-Universität Göttingen

nachricht Ultrasound sensors make forage harvesters more reliable
28.08.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>