Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Greener Way to Fertilize Nursery Crops

28.08.2012
A U.S. Department of Agriculture (USDA) scientist has found a "green" alternative to a type of fertilizer additive that is believed to contribute to the accumulation of heavy metals in waterways.

Ornamental nursery and floral crops require micronutrients like iron, manganese, copper and zinc. But fertilizers that provide these micronutrients often include synthetically produced compounds that bind with the micronutrients so they are available in the root zone.

The most commonly used compounds, known as chelating agents, are not readily biodegradable, and can extract metals from sediments. Their use is believed to add to the amounts of iron and other heavy metals that sometimes flow into or become soluble in waterways. Concerns in Europe about one, called EDTA, have prompted calls there for use of alternative chelating agents.

Joseph Albano, a horticulturalist with the Agricultural Research Service (ARS) U.S. Horticultural Research Laboratory in Fort Pierce, Fla., thinks he has found a "green" alternative for the floral and nursery crop industries. ARS is USDA's principal intramural scientific research agency, and this research supports USDA's commitment to agricultural sustainability.

Albano's alternative chelating agent is known as EDDS. It is a natural compound that is biodegradable and less likely to persist in the environment.

In a series of studies, Albano grew marigolds in standard soil-less potting media using fertilizers formulated with EDDS or one of two commonly used chelating agents: EDTA and DTPA. Each of the three treatments was chelated with iron so Albano could assess the effectiveness of EDDS as a fertilizer iron source.

The results showed that EDDS was a suitable chelating agent for use in fertilizers. There were no differences in plant growth or leaf-tissue iron levels among plants grown with iron-EDDS, those grown with iron-EDTA, or those grown with iron-DTPA fertilizers.

Iron-chelates, like iron-EDTA and iron-DTPA, degrade when exposed to light (photodegradation), so they are often stored in opaque containers that prevent exposure to sunlight. Albano also assessed iron-EDDS photodegradation and discovered that iron-EDDS degraded more quickly than iron-EDTA when exposed to light, which would contribute to its low persistence in the environment. Given how quickly it degrades, Albano recommends that iron-EDDS chelates also be stored in opaque containers.

The report, published in HortScience, was the first peer-reviewed study to evaluate EDDS as a chelating agent in fertilizers used in the production of a floricultural crop, according to Albano. The work is expected to encourage the use of EDDS as an environmentally friendly chelating agent in floral and nursery crop operations.

Read more about this research in the August 2012 issue of Agricultural Research magazine.

Dennis O’Brien | EurekAlert!
Further information:
http://www.ars.usda.gov
http://www.ars.usda.gov/is/pr/2012/120827.htm

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>