Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vortex rings may aid cell delivery, cell-free protein production

15.08.2016

Some of the world's most important discoveries - penicillin, vulcanized rubber and Velcro, to name a few - were made by accident. In fact, it's been said that upward of half of all scientific discoveries are by chance.

Add vortex ring freezing to that long list of "accidents."


A microscopic image of doughnut-shaped microparticles, made from silica nanoparticles through vortex ring freezing. This work is detailed in a paper published on Aug. 4 in Nature Communications.

Credit: Duo An/Cornell University

Duo An, a doctoral student in the labs of both professor Dan Luo and assistant professor Minglin Ma, in the Department of Biological and Environmental Engineering, was an undergraduate from China doing an internship at Cornell when he stumbled upon a phenomenon that has the potential to greatly improve cell-free protein production and cell delivery, particularly for Type 1 diabetes patients.

A group headed by Luo and Ma has published the paper, "Mass production of shaped particles through vortex ring freezing," which was released online Aug. 4 in Nature Communications. An is lead author.

Vortex rings are ubiquitous in nature - a mushroom cloud of smoke is one example - and the ring's evolution exhibits a rich spectrum of complicated geometries, from spherical to teardrop to toroidal (doughnut-shaped). The researchers used these features to control and mass produce inorganic and organic particles via an electrospraying process, whereby a multitude of vortex ring-derived particles (VRPs) can be produced, then frozen at precise time points. The group reported they could produce 15,000 rings per minute via electrospraying.

They found controlling the shape and speed of the spray, as well as the speed of the chemical reaction, can yield different structures.

"We can tune both of these timescales, and control at which stage we can freeze the structure, to get the results we want," An said.

While working in Luo's lab during a summer internship, An was making nanoclay hydrogels - injecting one solution into another to create a gel. But for this particular procedure, instead of direct injection, he dripped one solution into another. When the first solution entered the second, it created vortex-ring particles.

It wasn't until two years later, while working in Ma's lab, that he recalled the vortex rings he'd created and wondered if that concept could be applied to Ma's work with microcapsules and cell therapy. The Ma lab focuses on cell delivery for Type 1 diabetes patients.

Ma admitted that the concept of using a doughnut-shaped encapsulation hadn't occurred to him, but made perfect sense.

"We knew the concept that a doughnut shape is better, but we never thought of making it until we saw it [from An]," Ma said.

An advantage of the doughnut-shape encapsulation over a spherical-shaped one is shorter diffusion distance - the distance the encapsulated particle must travel to escape the capsule - while at the same time maintaining a relatively large surface area.

This concept could pave the way for other as-yet-unknown applications of vortex ring freezing, according to Luo.

"Our hope is that this type of material in these shapes can be used much more extensively in other labs for whatever they're trying to do," he said. "There is a whole field devoted to just particles, but by default, they are all thinking in terms of spherical particles. Hopefully, this will add to that field of study."

Ma, who earlier this year won a Hartwell Individual Biomedical Research Award for his work on juvenile diabetes, cited the work of collaborators Ashim Datta, professor of biological and environmental engineering, and Paul Steen, the Maxwell M. Upson Professor of Engineering in the Robert Frederick Smith School of Chemical and Biomedical Engineering. Datta's lab did the simulation work, and Steen's group provided key theoretical input.

"Their contributions put this work on much more solid ground," Ma said. "We now better understand the mechanism behind it, and can more purposefully design these particles in the future."

###

Other collaborators included graduate students Alex Warning, Kenneth Yancey, Chun-Ti Chang and Vanessa Kern.

This work was supported by grants from the American Diabetes Association, the SUNY Research Foundation, the National Institutes of Health and the National Science Foundation (NSF). The research made use of the Cornell Center for Materials Research Shared Facilities, which are supported by the NSF.

Tom Fleischman | EurekAlert!

More articles from Materials Sciences:

nachricht Meter-sized single-crystal graphene growth becomes possible
22.08.2017 | Science China Press

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>