Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


On the right track to super batteries

Dr. Xinliang Feng, who is a research scientist at the Max Planck Institute for Polymer Research in Mainz, is working on novel materials for energy storage and conversion. Currently, the EU Commission promotes his research with 1.5 million euros.

The European Research Council awards the ERC Starting Grant for top-level early-career scientists to Xinliang Feng, who is employed at the Max Planck Institute for Polymer Research (MPI-P). With that the chemist receives development funds amounting to 1.5 million euros for the next five years in order to set up a research group.

These funds allow Dr. Feng to continue and intensify research on two-dimensional materials. These two-dimensional nanosheets which consist of one layer of atoms, have unique characteristics and can be considered for a wide range of applications. "Our research will concentrate on materials for energy storage and conversion but will not be limited to that. It is clear that possible areas of application may reach much further,” Dr. Feng is expecting.

Material synthesis on order

Since 2004, when Dr. Feng started his doctorate at the MPI-P, he has been working on synthesizing and studying these ultra-thin nanomaterials – especially graphene. This material, which is a layer of carbon atoms arranged in honey combs, is regarded as being promising in the future. Graphene excellently conducts electricity and heat, it is very light and elastic, however, as hard as diamond and hundred times more tearproof than steel. Its properties vary dependent on configuration and structure of the layer. Dr. Feng aims to produce these graphene materials by chemical synthesis as well as by mechanical exfoliation in order to adjust the properties to the functions and thus to the future applications. The chemist also aims to develop the synthesis of other nanosheets with tailored functions from metal oxides, polymers and organic compounds.

In this regard, not only single layers are interesting for Dr. Feng: He will develop strategies to combine several two-dimensional layers to compound materials, so-called composites. Again, this is how their properties can be specifically combined. Theoretically! This task that seems to be so easy requires comprehensive scientific know-how and experience in practice. Promising results have already been achieved at the MPI-P: The research group centered around director Klaus Müllen, where Dr. Feng belongs to as well, succeeded in developing a material composition for much more efficient lithium ions batteries amongst others. Instead of the storage material graphite, the scientists used metal oxides with significantly higher charge capacity. Due to the fact that these are not suitable for long term use, they were coated with graphene layers. The proceeding included some chemical tricks, but the prolonged battery life achieved indicates a great potential for countless users of mobile devices.

Practically based fundamental research

This was just the beginning for Xinliang Feng. The projects are still in their infancy; they must be optimized and standardized in order to allow the two-dimensional nanomaterials to develop from being hope to achieve performance in innovative applications. The European Research Council (ERC) honoured his results achieved so far, but also expresses high expectations for future developments.

ERC Starting Grants are among the most prestigious grants awarded by the European Research Council for world-class researchers. They give the opportunity for top-level early-career scientists to conduct fundamental research and establish or consolidate their own research team. According to ERC, the ERC 2012 promotes more than 500 research scientists and their projects with a total of about 800 million euros. All in all, more than 4,100 scientists applied for this grant.

Max Planck Institute for Polymer Research
Press and
Public Relations:
Stephan Imhof
Tel: 06131 379-132
Fax: 06131 379-330

About the Max Planck Institute for Polymer Research
The Max Planck Institute for Polymer Research, which was founded in 1984, ranks among the world-wide leading research centers in the field of polymer research. The focus on so-called soft materials and macro-molecular materials has resulted in the worldwide unique position of the Max Planck Institute for Polymer Research and its research focus. Coworkers from Germany and abroad are conducting fundamental research on both production and characterization of polymers as well as analyzing their physical and chemical properties. The beginning of 2012 saw a total of 503 people working at the MPI-P, of whom 119 were supported by third-party funding and 70 were privately sponsored. The work force was made up of 109 scientists, 149 doctoral and diploma students, 70 visiting scientists and 175 technical, administrative and auxiliary staff.

Stephan Imhof | Max-Planck-Institut
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>