Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory explains how new material could improve electronic shelf life

10.01.2012
Research by UT Dallas engineers could lead to more-efficient cooling of electronics, producing quieter and longer-lasting computers, and cellphones and other devices.

Much of modern technology is based on silicon's use as a semiconductor material, but research recently published in the journal Nature Materials shows that graphene conducts heat about 20 times faster than silicon.

"Heat is generated every time a device computes," said "Dr. Kyeongjae "KJ" Cho, associate professor of materials science and engineering and physics at UT Dallas and one of the paper's authors. "For example a laptop fan pumps heat out of the system, but heat removal starts with a chip on the inside. Engineered graphene could be used to remove heat – fast."

It was demonstrated in 2004 that graphite could be changed into a sheet of bonded carbon atoms called graphene, which is believed to be the strongest material ever measured. Although much research has focused on the strength and electronics of the material, Cho has been studying its thermal conductivity.

As electronics become more complex and decrease in size, the challenge to remove heat from the core becomes more difficult, he said. Desktop and laptop computers have fans. Smaller electronic devices such as cellphones have other thermoelectric cooling devices.

"The performance of an electronic device degrades as it heats up, and if it continues the device fails," said Cho, also a visiting professor at Seoul National University in South Korea. "The faster heat is removed, the more efficient the device runs and the longer it lasts."

Research assistant Hengji Zhang of UT Dallas is also an author of the paper. Cho and Zhang have published prior papers in the Journal of Nanomaterials and Physical Review B about graphene's thermal conductivity. For the Nature Materials paper, researchers at UT Austin conducted an experiment about graphene's heat transfer. They used a laser beam to heat the center of a portion of graphene, then measured the temperature difference from the middle of the graphene to the edge. Cho's theory helped explain their findings.

"We refined our modeling work taking into account their experimental conditions and found we have quantitative agreement," Cho said. "By understanding how heat transfers through a two-dimensional graphene system, we can further manipulate its use in semiconductor devices used in everyday life." For this purpose, Cho and Zhang are preparing a follow-up article on how to control the thermal conductivity in graphene.

The Nature Materials experiment was done in collaboration with Shanshan Chen and Weiwei Cai of Xiamen University in Xiamen China and UT Austin; Qingzhi Wu, Columbia Mishra and Rodney Ruoff of UT Austin; Junyong Kang also of Xiamen University; and Alexander Balandin of the University of California, Riverside.

The research was supported by the National Science Foundation, Office of Naval Research, National Natural Science Foundation of China, Semiconductor Research Corporation, NRF of Korea, and W.M. Keck Foundation.

LaKisha Ladson | EurekAlert!
Further information:
http://www.utdallas.edu

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>