Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Synthesis Approach Could Create More Durable and Elastic Materials

11.11.2008
In research slated for publication in the Journal of the American Chemical Society, Texas Tech University chemists demonstrated a process for creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

In the not-so-distant future, plastics could be more durable and rubbers could be more … well … rubbery thanks to a novel new approach to polymer synthesis discovered by Texas Tech University organic chemists.

In research slated for publication in the Journal of the American Chemical Society, the scientists demonstrated what principal investigator Michael Mayer refers to as an “elegant and simple” process for ultimately creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

“No one has ever reported making polymers in this way,” said Mayer, an assistant professor of organic chemistry in the Department of Chemistry and Biochemistry. “It is a fundamentally new, stripped-back approach to the synthesis of this class of polymeric materials.”

Mayer’s findings provide a new way to form unusually complex polymers –compounds such as rubber formed from clusters of atoms that are chemically chained together.

Current methods for creating polymer networks rely on chemical reactions to cross-link the large molecules. However, when the resulting materials come under stress, Mayer said, the cross-links, which are often times the weakest links, can break resulting in failure of the material.

Mayer and his team, led by senior graduate student Songsu Kang, tried a different approach, beginning with molecules in the form of two interlocked rings – much like the rings used by magicians in the so-called “magic ring” trick.

Their resulting materials have rings that can literally slide along the polymer chains, providing anchor points for cross-linking that can move when the materials are mechanically strained.

Mayer said this proof-of-concept research could someday be used to create pliable networks of polymers, and said his design fits with the theoretical models used by polymer physicists.

“Their theoretical models show polymers as cross-linked by such rings,” he said. “Now we actually have a well-defined method to prepare materials that fit these descriptions.”

To find a copy of the report, visit:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/pdf/ja806122r.pdf.
CONTACT: Mike Mayer, assistant professor, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-1289, or mf.mayer@ttu.edu.

Cory Chandler | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Materials Sciences:

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>