Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Synthesis Approach Could Create More Durable and Elastic Materials

11.11.2008
In research slated for publication in the Journal of the American Chemical Society, Texas Tech University chemists demonstrated a process for creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

In the not-so-distant future, plastics could be more durable and rubbers could be more … well … rubbery thanks to a novel new approach to polymer synthesis discovered by Texas Tech University organic chemists.

In research slated for publication in the Journal of the American Chemical Society, the scientists demonstrated what principal investigator Michael Mayer refers to as an “elegant and simple” process for ultimately creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

“No one has ever reported making polymers in this way,” said Mayer, an assistant professor of organic chemistry in the Department of Chemistry and Biochemistry. “It is a fundamentally new, stripped-back approach to the synthesis of this class of polymeric materials.”

Mayer’s findings provide a new way to form unusually complex polymers –compounds such as rubber formed from clusters of atoms that are chemically chained together.

Current methods for creating polymer networks rely on chemical reactions to cross-link the large molecules. However, when the resulting materials come under stress, Mayer said, the cross-links, which are often times the weakest links, can break resulting in failure of the material.

Mayer and his team, led by senior graduate student Songsu Kang, tried a different approach, beginning with molecules in the form of two interlocked rings – much like the rings used by magicians in the so-called “magic ring” trick.

Their resulting materials have rings that can literally slide along the polymer chains, providing anchor points for cross-linking that can move when the materials are mechanically strained.

Mayer said this proof-of-concept research could someday be used to create pliable networks of polymers, and said his design fits with the theoretical models used by polymer physicists.

“Their theoretical models show polymers as cross-linked by such rings,” he said. “Now we actually have a well-defined method to prepare materials that fit these descriptions.”

To find a copy of the report, visit:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/pdf/ja806122r.pdf.
CONTACT: Mike Mayer, assistant professor, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-1289, or mf.mayer@ttu.edu.

Cory Chandler | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Materials Sciences:

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

nachricht Successful Mechanical Testing of Nanowires
07.12.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>