Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Synthesis Approach Could Create More Durable and Elastic Materials

11.11.2008
In research slated for publication in the Journal of the American Chemical Society, Texas Tech University chemists demonstrated a process for creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

In the not-so-distant future, plastics could be more durable and rubbers could be more … well … rubbery thanks to a novel new approach to polymer synthesis discovered by Texas Tech University organic chemists.

In research slated for publication in the Journal of the American Chemical Society, the scientists demonstrated what principal investigator Michael Mayer refers to as an “elegant and simple” process for ultimately creating a slip-linked pulley system of molecules that could be used to create tougher and more elastic synthetic materials.

“No one has ever reported making polymers in this way,” said Mayer, an assistant professor of organic chemistry in the Department of Chemistry and Biochemistry. “It is a fundamentally new, stripped-back approach to the synthesis of this class of polymeric materials.”

Mayer’s findings provide a new way to form unusually complex polymers –compounds such as rubber formed from clusters of atoms that are chemically chained together.

Current methods for creating polymer networks rely on chemical reactions to cross-link the large molecules. However, when the resulting materials come under stress, Mayer said, the cross-links, which are often times the weakest links, can break resulting in failure of the material.

Mayer and his team, led by senior graduate student Songsu Kang, tried a different approach, beginning with molecules in the form of two interlocked rings – much like the rings used by magicians in the so-called “magic ring” trick.

Their resulting materials have rings that can literally slide along the polymer chains, providing anchor points for cross-linking that can move when the materials are mechanically strained.

Mayer said this proof-of-concept research could someday be used to create pliable networks of polymers, and said his design fits with the theoretical models used by polymer physicists.

“Their theoretical models show polymers as cross-linked by such rings,” he said. “Now we actually have a well-defined method to prepare materials that fit these descriptions.”

To find a copy of the report, visit:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/pdf/ja806122r.pdf.
CONTACT: Mike Mayer, assistant professor, Department of Chemistry and Biochemistry, Texas Tech University, (806) 742-1289, or mf.mayer@ttu.edu.

Cory Chandler | Newswise Science News
Further information:
http://www.ttu.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>