Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more: Study of tiny droplets could have big applications

24.02.2012
Under a microscope, a tiny droplet slides between two fine hairs like a roller coaster on a set of rails until — poof — it suddenly spreads along them, a droplet no more.
That instant of change, like the popping of soap bubble, comes so suddenly that it seems almost magical. But describing it, and mapping out how droplets stretch into tiny columns, is a key to understanding how liquids affect fibrous materials from air filters to human hair. And that knowledge allows scientists to better describe why water soaks into some materials, beads atop others and leaves others matted and clumped.

To get those answers, an international team of researchers led by scientists at Princeton University made a series of close observations of how liquid spreads along flexible fibers. They were able to construct a set of rules that govern the spreading behavior, including some unexpected results. In a paper published Feb. 23 in Nature, the researchers found that a key parameter was the size of the liquid drop.

"That surprised us," said Camille Duprat, the paper's lead author. "No one had thought about volume very much before."

Duprat, a postdoctoral researcher in the Department of Mechanical and Aerospace Engineering, said the research team was able to determine drop sizes that maximized wetting along certain fibers, which could allow for increased efficiency in industrial applications of liquids interacting with fibrous materials — from cleaning oil slicks to developing microscopic electronics. The team also discovered a critical drop size above which the drop would not spread along the fibers, but would remain perched like a stranded roller coaster car.

"If in any engineering problem you can learn an optimal size above which something does not happen, you have learned something very important about the system," said Howard Stone, a co-author of the paper.

A study led by researchers at Princeton University has yielded insights into how liquid spreads along flexible fibers, which could allow for increased efficiency in various industrial applications. The team's experiments show that the size of oil droplets determines whether they spread along flexible glass fibers. At the critical size (top two examples), the droplets expand into columns of liquid, but larger droplets sit immobile between the glass rods (bottom example). (Image courtesy of Camille Duprat and Suzie Protière)

Stone, the Donald R. Dixon '69 and Elizabeth W. Dixon Professor in Mechanical and Aerospace Engineering, said the team conducted a series of experiments observing how liquid spread along different types of fibers. The plan was to make broad observations and derive a governing theory from the experiments.

"We had a lot of results and at some point we started having these meetings trying to understand what we had," he said. "We realized the way to think about it was in the way of critical sizes."

Besides Duprat and Stone, the researchers included Alexander Beebe, a Princeton junior majoring in mechanical and aerospace engineering, and Suzie Protière, an associate scientist at the University of Pierre and Marie Curie in Paris. The research at Princeton was conducted with support from Unilever.

The researchers determined that the critical parameters governing how drops interact with flexible fibers were the size of the droplet, the flexibility and radii of the fibers, and the geometry of the fiber array (such as the space and angle between pairs of fibers).

The experiment examined the behavior of a droplet placed on a pair of flexible glass fibers that was clamped at one end and free at the other. When the drop was placed at the clamped end of the pair, the fibers bent inward and the drop moved toward the free end. As the drop moved further out, the fibers bent more, and the drop accelerated and elongated. At some point, the drop spontaneously spread and formed a liquid column between the now-coalesced fibers.

To understand the critical drop size at which no spreading occurred, the researchers measured the distance between the fibers at the instant that the spreading began. They concluded that spreading occurs when the spacing between the fibers dictates that it takes less energy for the liquid to form a column than it does to remain as a drop. The researchers were also able to use their observations to calculate an optimal drop size that resulted in a maximum spread of liquid along the fibers.

The researchers said their findings could have a wide array of applications. Waterfowls' feathers, for example, are a natural array of fibers that keep the birds warm and dry. When oil coats the feathers, it disrupts the fiber arrangement by clumping the feathers. Using goose feathers, the team found that oil droplets above a certain size did not spread along the fibers and allowed the feather to be cleaned more easily. Duprat said the findings could have implications for methods used to rescue injured birds and also for dispersants applied to oil slicks after accidents.

On the other hand, items such as aerosol-removal filters or hairsprays require total spreading along fibers for effectiveness. The control of droplet sizes could also prove important for the fabrication of microstructures by resulting in the optimal spread of liquid material along pillars and similar forms, such as those found in various forms of lithography used in micro- and nanofabrication.

"Materials react differently to different drop sizes," Duprat said. "You can design a material to react to a specific drop size or you can produce a drop size to affect a specific material."

John Sullivan | EurekAlert!
Further information:
http://www.princeton.edu
http://www.princeton.edu/engineering/news/archive/?id=6842

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>