Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells are a soft touch for nano-engineered biomaterials

10.06.2014

Scientists from Queen Mary University of London have shown that stem cell behaviour can be modified by manipulating the nanoscale properties of the material they are grown on - improving the potential of regenerative medicine and tissue engineering as a result.

Stem cells are special because they are essential to the normal function of our organs and tissues. Previous research shows stem cells grown on hard substrates go on to multiply but do not differentiate: a process by which the cells specialise to perform specific functions in the body. In contrast, stem cells grown on softer surfaces do go on to differentiate.      

In this new study, published in the journal Nano Letters, the researchers used tiny material patches known as nanopatches to alter the surface of the substrate and mimic the properties of a softer material. 

“By changing the surface properties like the shape of the substrate at the nanoscale level, we tricked the stem cells to behave differently,” explains co-author Dr Julien Gautrot, from QMUL’s School of Engineering and Materials Science and the Institute of Bioengineering

The team tested different sizes of nanopatches - from 3 microns to 100 nanometres (about one thousandth of the diameter of a hair). The stem cells behaved as if they were on a soft surface when in contact with the smallest patches because they can’t firmly grip them.  

Dr Gautrot added: “This development will be useful when there’s a need to create a rigid implant to be inserted into the body. Potentially, such nanopatches could provide a soft touch to the surface of the implant so that cells from the neighbouring tissues are not perturbed by such a hard material.” 

 

Notes to editors 

The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechano-Transduction’ will be published by the journal Nano Letters on Monday 9 June 2014.

 

For more information or to arrange interviews with the authors, please contact:

Neha Okhandiar

Public Relations Manager - Science and Engineering

T: +44 (0)207 882 7927

E: n.okhandiar@qmul.ac.uk

Queen Mary University of London                         

Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.

A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry. 

Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education

The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year. 

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar

Public Relations Manager - Science and Engineering

Marketing and Communications

Queen Mary University of London

327 Mile End Road, London, E1 4NS

T: +44 (0)207 882 7927

M: +44 (0)788 591 2572

E: n.okhandiar@qmul.ac.uk

W: www.qmul.ac.uk/media

Tw: @QMLsciencehound and @QMUL

Like us on Facebook

Neha Okhandiar | Queen Mary University of London

Further reports about: Differentiation Humanities Nano Relations Science Stem biomaterials diameter differentiate substrates tiny

More articles from Materials Sciences:

nachricht Diamonds get more beautiful with laser lamps
16.04.2015 | Heraeus Noblelight GmbH

nachricht X-ray study images structural damage in lithium-ion batteries
15.04.2015 | Deutsches Elektronen-Synchrotron DESY

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>