Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem cells are a soft touch for nano-engineered biomaterials

10.06.2014

Scientists from Queen Mary University of London have shown that stem cell behaviour can be modified by manipulating the nanoscale properties of the material they are grown on - improving the potential of regenerative medicine and tissue engineering as a result.

Stem cells are special because they are essential to the normal function of our organs and tissues. Previous research shows stem cells grown on hard substrates go on to multiply but do not differentiate: a process by which the cells specialise to perform specific functions in the body. In contrast, stem cells grown on softer surfaces do go on to differentiate.      

In this new study, published in the journal Nano Letters, the researchers used tiny material patches known as nanopatches to alter the surface of the substrate and mimic the properties of a softer material. 

“By changing the surface properties like the shape of the substrate at the nanoscale level, we tricked the stem cells to behave differently,” explains co-author Dr Julien Gautrot, from QMUL’s School of Engineering and Materials Science and the Institute of Bioengineering

The team tested different sizes of nanopatches - from 3 microns to 100 nanometres (about one thousandth of the diameter of a hair). The stem cells behaved as if they were on a soft surface when in contact with the smallest patches because they can’t firmly grip them.  

Dr Gautrot added: “This development will be useful when there’s a need to create a rigid implant to be inserted into the body. Potentially, such nanopatches could provide a soft touch to the surface of the implant so that cells from the neighbouring tissues are not perturbed by such a hard material.” 

 

Notes to editors 

The Nanoscale Geometrical Maturation of Focal Adhesions Controls Stem Cell Differentiation and Mechano-Transduction’ will be published by the journal Nano Letters on Monday 9 June 2014.

 

For more information or to arrange interviews with the authors, please contact:

Neha Okhandiar

Public Relations Manager - Science and Engineering

T: +44 (0)207 882 7927

E: n.okhandiar@qmul.ac.uk

Queen Mary University of London                         

Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.

A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry. 

Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education

The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year. 

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar

Public Relations Manager - Science and Engineering

Marketing and Communications

Queen Mary University of London

327 Mile End Road, London, E1 4NS

T: +44 (0)207 882 7927

M: +44 (0)788 591 2572

E: n.okhandiar@qmul.ac.uk

W: www.qmul.ac.uk/media

Tw: @QMLsciencehound and @QMUL

Like us on Facebook

Neha Okhandiar | Queen Mary University of London

Further reports about: Differentiation Humanities Nano Relations Science Stem biomaterials diameter differentiate substrates tiny

More articles from Materials Sciences:

nachricht OSU researchers prove magnetism can control heat, sound
29.05.2015 | Ohio Supercomputer Center

nachricht Engineering phase changes in nanoparticle arrays
26.05.2015 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>