Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford Researcher Sheds New Light on the Mysteries of Spider Silk

07.02.2013
Researcher and team are the first to measure all of the elastic properties of an intact spider's web, drawing a remarkable picture of the behavior of one of nature’s most intriguing structures. The work could lead to new “bio-inspired” materials that improve upon nature.

By Andrew Myers


Stanford post-doctoral scholar Kristie Koski developed a clever way to measure the elastic response of intact spider webs using a century-old spectroscopy technique that does not require physical contact with the silk. At left is an intact web and, on the right, a detail demonstrating the pinpoint accuracy of Koski's system. The portion of the web examined is on the right-center of the photo on the left. (Photo and illustration courtesy of Kristie Koski, Stanford University.)

As fibers go, there’s never been anything quite like spider silk. Stretch it. Bend it. Soak it. Dry it out. Spider silk holds up. It is five times stronger than steel and can expand nearly a third greater than its original length and snap right back like new. Ounce-for-ounce spider silk is even stronger than Kevlar, the man-made fiber used in bulletproof vests.

It would be understandable to think that science knows all there is to know about the remarkable physics of spider silk, but the truth is far from that. Now, using a long-known-but-underutilized spectroscopy technique, a Stanford researcher has shed new light on the mysteries of spider silk.

On January 27, in a paper in the journal Nature Materials, post-doctoral scholar Kristie Koski described how she was able, for the first time, to non-invasively, non-destructively examine the mechanical properties of an intact, pristine spider web just as it was spun by the spider that created it. Koski is a researcher in the Yi Cui Group in the Department of Materials Science and Engineering at Stanford University and the first author of the study. The work was performed when she was a post-doc under Professor Jeff Yarger at Arizona State University.
Stanford post-doctoral scholar Kristie Koski developed a clever way to measure the elastic response of intact spider webs using a century-old spectroscopy technique that does not require physical contact with the silk. At left is an intact web and, on the right, a detail demonstrating the pinpoint accuracy of Koski's system. The portion of the web examined is on the right-center of the photo on the left. (Photo and illustration courtesy of Kristie Koski, Stanford University.)

The complete elastic response of spider silk is described by five elastic constants that define how the web reacts to any possible combination of forces—pulling, twisting or shearing in any direction. All five have never been measured in a pristine spider web. At best, earlier studies have measured one or two of the five constants at a time and, even at that, only in isolated sections of a web. Structurally speaking, the old techniques are the equivalent of testing individual steel beams and cables and trying to extrapolate conclusions about the strength of a bridge.

Looking ahead, Koski believes that understanding the complete properties of a spider web exactly as it exists in nature is key to the engineering of new “bio-inspired” materials that not only mimic, but also improve upon nature.

“My goal is to study the nanostructure of silk to understand not just how spider silk behaves as it does, but also why it behaves in such remarkable ways in hopes of someday creating better man-made fibers,” said Koski.

Overlooked technique

The research was made possible by the use of a century-old-yet-overlooked measurement technique known as Brillouin spectroscopy. The technique shines laser light on the spider silks. The light produces sound waves in the silks, which, in turn, reflect some light back to the spectrometer. The researchers call the reflection “scattering.”

“It is a bit like plucking the string of a violin, only we never have to physically touch the string to play it,” said Koski.

The spectrometer measures small variations in the scattered light to ascertain the underlying tension of the silk being measured. The power of Brillouin scattering rests in the gentle way it gathers data enabling in situ measurements on spider webs, including mechanical properties at precise spots on the web such as silk intersections and glue spots.

Essentially, Koski and cohort have developed a non-invasive, non-destructive technique to measure the elasticity not just of individual strands of spider silk or even a few interconnected strands, as had those earlier studies, but of an entire intact spider web. Such exhaustive information was previously unobtainable with traditional stress–strain tests, which have to grip single strands or, at most, a few strands between two clamps to stretch them till they break.

“We don’t have to touch the web to measure it,” explained Koski.

The result is that Koski and collaborators are the first to quantify the complete linear elastic response of spider webs, testing for subtle variations in tension among discrete fibers, junctions, and glue spots for every type of deformation possible. It is a remarkable picture of the behavior of one of nature’s most intriguing structures.

Surprises

Among the team’s findings is that stiffness of a web is not uniform, but varies among isolated fibers, intersection points, and glue spots. For a structure formed supposedly of uniform spider silk, this was a bit of a surprise.

Evolutionarily, the researchers theorize this variation is advantageous to the spider in creating webs that are stiffer in some locations and more elastic in others. They think this might help the web withstand the elements and to better absorb the energy of captured prey.
Another surprise came when Koski looked at supercontraction. In high humidity—when it rains or in the morning dew—spider silk absorbs water, causing unrestrained fibers to shrink by as much as half, likely due to molecular disorganization caused by the water. It is a curious response for something so key to a spider’s survivability and it has raised some debate in the scientific community as to why nature would have favored supercontraction.

Scientists have posited three explanations for supercontraction. First, some think it is a mechanical constraint inherent in the molecular structure of silk, not an evolutionarily evolved phenomenon and that it has no bearing on the performance of a web. It’s just a fact of spider silk. The second theory is that supercontraction helps the spider tailor the silk as it is being spun to meet varying environmental and structural requirements. Or, lastly, that supercontraction helps tighten the web when it gets wet, preventing the heavy water droplets from dragging the web down and preventing the spider from catching any prey.

Until this paper, the last theory could not be tested because researchers had no way to probe complete webs. With their clever technique, Koski and team were able to measure the elastic response of silk during supercontraction. They found that the silk, which is essentially a matrix of restrained fibers, stiffens with 100% humidity, thus supporting the tightening web hypothesis.

The research also lends credence to the theory that supercontraction helps the spider tailor the properties of the silk during spinning by pulling and restraining the silk threads and adjusting the water content.

“The possibility of adjusting mechanical properties by simply adjusting water content is interesting from a bio-inspired mechanical structure perspective and could lead in interesting research directions as we try to invent new fibers,” said Koski.

Andrew Myers is associate director of communications for the Stanford University School of Engineering.

Andrew Myers | EurekAlert!
Further information:
http://www.stanford.edu
http://engineering.stanford.edu/news/stanford-researcher-sheds-new-light-mysteries-spider-silk

More articles from Materials Sciences:

nachricht InLight study: insights into chemical processes using light
05.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>