Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In search of speed

11.01.2010
You couldn't have asked for a better day for a competition. It's minus five degrees, the sun's shining and there's not a breath of wind.

The snow's perfect and the biathlete's in top form. He's one of the best – he can win the race. Often there's only a few thousandths of a second between the victor and the vanquished, so the gliding ability of his skis is very important. And this depends on several factors, not least whether the wax mixture he's applied suits the particular type of snow.

Anyone looking for optimal ski performance must first understand the laws of friction. That is why wax and ski coating manufacturers are counting on the expertise of researchers at the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg. The scientists have been studying the gliding ability of skis and know how to make ski athletes go like the wind.

Prof. Dr. Matthias Scherge, Head of the new Microtrobilogy Center in Karlsruhe, says: »The snow, the ski coating and the wax that is applied all unite to form a single entity. We can't alter the snow, but we can adapt both the wax and the coating to suit particular snow conditions.« The researchers use a special technique to analyze the friction and gliding effects; they simulate the contact between a single snow crystal and the coating with the aid of a test rig, and then measure the coefficient of friction in relation to temperature.

»It's the first 10 to 15 nanometers of the coating surface that determine the gliding effects,« explains Scherge. And they have another item of equipment in their armory as well: a ski tribometer. Here, a small section of ski travels in a circle over a snow-covered disc, allowing the researchers to test different combinations of waxes and coatings and ascertain the optimum combinations for specific conditions such as temperature. The ultimate test is then conducted in the ski hall, where biathletes perform glide tests on a hundred-meter test run with a defined gradient. Their times are measured with the aid of a leg-mounted transponder, which guarantees split-second accuracy; this enables the researchers to establish how many thousandths of a second can be shaved off their times by the right combination of ski coating and wax.

The researchers are working with Holmenkol and other partners to develop novel waxes and super fast coatings. Scherge says: »We've talked with athletes and also with the technicians who wax their skis prior to every competition. It's only with their knowledge and experience that we'll be able to create skis that glide perfectly.«

Matthias Scherge | Fraunhofer-Gesellschaft
Further information:
http://www.iwm.fraunhofer.de

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>