Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sailing with nerves of glass

03.07.2012
In the world of racing, tiny details can be the difference between victory and defeat. It is no wonder, then, that manufacturers of racing yachts are always on the lookout for new technologies to optimize boats and sails. An ingenious new sensor technology now helps them to extend the boundaries of what is possible.

The constant hunger to break new records has turned boat building into a high-tech business. The racing yachts that compete at international regattas today are sporting machines designed to reach top speeds. The process of optimizing the boats has been ongoing for decades. However, just a short while ago it looked as if a limit had been reached.


To measure the forces acting on the sail, researchers have fi tted it with a web of glass fibers. (© Fraunhofer HHI)

On the fifth leg of the Volvo Ocean Race in spring 2012, from New Zealand to Brazil, only one of the six teams reached its destination without technical problems – all the others were forced to either take a break from the race or give up altogether. The regatta became a war of attrition. And yet these yachts are the best in the world. “These boats are very well constructed,” affirms Ian Walker, skipper of the Abu Dhabi Ocean Racing team. “I just think we put too much strain on them, and since they are so rigid and so light it’s hard not to believe that they ultimately must break.” So how do you build yachts that are faster than the wind and yet stable enough to withstand the harsh conditions on the high seas?

Back on course with sensor technology
A new sensor system from the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute HHI can help to detect weak points on time and warn yachtsmen when breaking point has been reached. Prof. Wolfgang Schade and his team in the Project Group for Fiber Optical Sensor Systems in the German town of Goslar have developed “nerves of glass” which can measure the forces that act on hulls, masts, and sails. The technology was actually developed for monitoring wind turbines, where rotor blades and cables are exposed to high loads. “With fiber optic sensors, we can detect delaminations and even cracks at any early stage – long before a part breaks or fails,” explains Schade. “All you need is a fiber optic cable, in which dozens of sensors can be fitted.” The centerpiece of the new technology is “fiber Bragg grating”, microscopic structures that are integrated in the glass fiber at defined intervals and which alter the refractive index. Light racing through the glass fiber is reflected by these lattice points.

The wavelength of the reflected light depends on the distance between the microscopic structures: every stretching or compression of the glass fiber alters the wavelength. To be able to measure the reflectance spectrum quickly and cheaply, the researchers developed a mini-spectrometer, which consists of a chip that splits light into various frequencies. By analyzing the frequency spectrum, experts can draw conclusions about the forces currently acting on the glass fiber.

The idea to use the measurement technology on sailboats came to Schade during a sailing voyage in the fall of 2010. “Sailing is all about making best use of the wind and being as fast as possible. At the same time, you also have to avoid pushing the equipment beyond breaking point. Fiber optic sensors can help to determine the forces acting on hulls, masts, and sails during the journey in real time.” A few months later, Schade was able to demonstrate that the sensors were up to the task of advancing the sport of sailing. At the Düsseldorf boat fair he met Jens Nickel, who runs a sail workshop in Stade in northern Germany. In collaboration with the sailcloth manufacturer Dimension-Polyant, a web of glass fibers containing 45 measuring points was fitted to a mainsail and a genoa in Nickel’s workshop.

Measurements were then conducted on the sails on a test journey. “It turned out that the tension in the head, right at the top of the sail, was greater than assumed,” says Nickel. “However, the strain on the clew, the lower aft corner of a sail, and on the entire leech area, the aft edge of a sail, was smaller than had been thought.” Nickel’s sail workshop used the data right away to optimize their working processes. The sailmaker started reinforcing the areas that were subject to greater stress and using lighter material in the areas that were less stressed.

Schade and his team’s next objective is to adapt the measurement technology so it is fit for use in competitive racing. “We have now fitted sail battens with fiber optic sensors, which will help competitors in future to find the optimal trim, i.e. the sail position at which the boat travels the fastest under specific wind and wave conditions,” explains Schade. For the first time, the fiber optic sensors and the connected measuring equipment – which is no bigger than a cigarette packet and contains an LED light source, spectrometer, and electronics – are supplying reproducible values.

This data tells the crew in which areas there is too much or too little pressure, or how stresses shift to different areas, for example when the sheets are pulled in tighter. The results provided by the sensor technology will be accessible everywhere on board at all times – Schade’s team has already developed an app that allows crew members to access real time data from their smart phones. The new measuring system will be launched shortly under the name NextSailSystem.

Prof. Dr. Wolfgang Schade | Fraunhofer-Institute
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/july/sailing-with-nerves-of-glass.html

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>