Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From Rice Husks to Valuable Chemical Products for the Future

Science System Corporation Shion Inc. has developed wet combustion technology to convert waste organic materials, particularly rice husks, to hydrogen and other value-added materials using water in a novel hexagonal batch reactor.

The Institute of Chemical and Engineering Sciences (ICES), an Institute of The Agency for Science, Technology and Research (A*STAR), is collaborating with Shion Pte Ltd (Shion), a wholly-owned subsidiary of Japan’s Science System Corporation Shion Inc., in a 18-month project to further develop wet combustion technology invented by Science System Corporation Shion Inc. The research collaboration agreement was signed today by Dr. Keith Carpenter, Executive Director, ICES and Ms. Fuki Kashihara, Executive Director and CEO, Shion.

Science System Corporation Shion Inc. has developed wet combustion technology to convert waste organic materials, particularly rice husks, to hydrogen and other value-added materials using water in a novel hexagonal batch reactor. Products such as pyroligneous acid (wood vinegar) could be used in the building, chemical, medical or agricultural sectors. In this collaboration, ICES will assist Shion in developing a continuous process of their technology. Both parties will also investigate the best mix of products to make for maximum economic value. The process will be run continuously for a significant period of time to demonstrate its technical viability and robustness for mass production.

At present, fossil feedstocks are the main source of chemical production. With current concerns over the supply and increasing cost of fossil resources, uncertainties over security of energy supplies and the effect of rising carbon dioxide levels in the atmosphere, alternative processes utilising renewable resources are the focus of many research groups around the world. This technology could offer a sustainable process to convert waste materials to valuable products such as hydrogen and also limit the emission of carbon dioxide and other greenhouse gases.

Dr. Keith Carpenter commented, “Singapore takes the issues of sustainability and security of supply of fuels and chemicals very seriously. We are heavily dependent on fossil fuels, as are many countries, and diversifying towards more sustainable resources is an important global issue, not only for Singapore but for many countries. We are happy to work with Shion in this project and believe that this collaboration will be one of the ways to tackle the challenges facing society today.”

Ms. Fuki Kashihara commented, “We established our company, with an understanding that there is a need for sustainable and constructive society. To achieve this, we have been working in Japan with like-minded top engineers in research and development. However, to carry out world class research and to deliver our technology worldwide, we decided to collaborate with ICES whom we consider to be the best partner. ICES has the necessary expertise and capabilities in process engineering and chemistry to assist us to further develop our technology. We hope our collaboration creates new value and future growth opportunities for Singapore and worldwide.”

For media enquiries please contact:

Ms. Hera Adam
Science and Engineering Institutes
for Institute of Chemical and Engineering Sciences
Tel: +65 6796 3894
Fax: +65 6873 4805
Mr. Yuji Fujita
Director and COO
For Shion Pte Ltd
Tel: +65 90268010
Fax: +81 3 6745 9513

Lee Swee Heng | Research asia research news
Further information:

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>